lolium multiflorum
Recently Published Documents


TOTAL DOCUMENTS

1300
(FIVE YEARS 184)

H-INDEX

47
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Daniel A. Bastías ◽  
Ludmila Bubica Bustos ◽  
Ruy Jáuregui ◽  
Andrea Barrera ◽  
Ian S. Acuña-Rodríguez ◽  
...  

Seeds commonly harbour diverse bacterial communities that can enhance the fitness of future plants. The bacterial microbiota associated with mother plant’s foliar tissues is one of the main sources of bacteria for seeds. Therefore, any ecological factor influencing the mother plant’s microbiota may also affect the diversity of the seed’s bacterial community. Grasses form associations with beneficial vertically transmitted fungal endophytes of genus Epichloë. The interaction of plants with Epichloë endophytes and insect herbivores can influence the plant foliar microbiota. However, it is unknown whether these interactions (alone or in concert) can affect the assembly of bacterial communities in the produced seed. We subjected Lolium multiflorum plants with and without its common endophyte Epichloë occultans (E+, E-, respectively) to an herbivory treatment with Rhopalosiphum padi aphids and assessed the diversity and composition of the bacterial communities in the produced seed. The presence of Epichloë endophytes influenced the seed bacterial microbiota by increasing the diversity and affecting the composition of the communities. The relative abundances of the bacterial taxa were more similarly distributed in communities associated with E+ than E- seeds with the latter being dominated by just a few bacterial groups. Contrary to our expectations, seed bacterial communities were not affected by the aphid herbivory experienced by mother plants. We speculate that the enhanced seed/seedling performance documented for Epichloë-host associations may be explained, at least in part, by the Epichloë-mediated increment in the seed-bacterial diversity, and that this phenomenon may be applicable to other plant-endophyte associations.


2021 ◽  
Vol 1 (1-2) ◽  
pp. 1-10
Author(s):  
Tamer Üstuner ◽  
Kamal Almhemed ◽  
Muhammad Al Sakran ◽  
Menderes Üstüner

The experiment was implemented by CRD design with three replications and lasted for 40 days, from 5 October until 15 November 2020. Four extract concentrations of D. graveolens 0, 2, 6, and 10% were used. The concentration of 0% was considered as control. The allelopathic effect has been studied on five weed species; Amaranthus retroflexus L., Portulaca oleracea L., Lolium multiflorum Lam., Sorghum halepense L., and Cuscuta campestris Yunck. The research also aimed to determine the effect of Stinkwort extract on the growth of tomato seedlings. All concentrations affected seed germination for all studied weeds. The concentration of 10% was more influential in growth-related indicators compared to other concentrations. The seeds of L. multiflorum and rhizomes of S. halepense were more tolerant to D. graveolens allelochemicals in germination rate than A. retroflexus, P. oleracea, and C. campestris. All concentrations led to a reduction in the weed heights and the wet and dry weights compared with the controls. The effect of the extract with various concentrations was catalytic for the growth of tomato seedlings, as the average height of tomato seedlings was in direct proportion to the concentration.


2021 ◽  
Vol 1 (1-2) ◽  
pp. 3-11
Author(s):  
Tamer Üstuner ◽  
Kamal Almhemed ◽  
Muhammad Al Sakran ◽  
Menderes Üstüner

The experiment was implemented by CRD design with three replications and lasted for 40 days, from 5 October until 15 November 2020. Four extract concentrations of D. graveolens 0, 2, 6, and 10% were used. The concentration of 0% was considered as control. The allelopathic effect has been studied on five weed species; Amaranthus retroflexus L., Portulaca oleracea L., Lolium multiflorum Lam., Sorghum halepense L., and Cuscuta campestris Yunck. The research also aimed to determine the effect of Stinkwort extract on the growth of tomato seedlings. All concentrations affected seed germination for all studied weeds. The concentration of 10% was more influential in growth-related indicators compared to other concentrations. The seeds of L. multiflorum and rhizomes of S. halepense were more tolerant to D. graveolens allelochemicals in germination rate than A. retroflexus, P. oleracea, and C. campestris. All concentrations led to a reduction in the weed heights and the wet and dry weights compared with the controls. The effect of the extract with various concentrations was catalytic for the growth of tomato seedlings, as the average height of tomato seedlings was in direct proportion to the concentration.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Yuki Matuda ◽  
Arihiro Iwasaki ◽  
Kiyotake Suenaga ◽  
Hisashi Kato-Noguchi

Metasequoia glyptostroboides Hu et W.C. Cheng is one of the oldest living conifer species, and it has remained unchanged for millions of years compared to its fossils from the Cretaceous period. The species are cultivated in the parks, gardens, and roadsides in many countries. We investigated the allelopathy and allelopathic substances in fallen leaves of M. glyptostroboides. An aqueous methanol extract of the fallen leaves inhibited the growth of cress (Lepidium sativum L.), lettuce (Lactuca sativa L.), alfalfa (Medicago sativa L.), Lolium multiflorum Lam., Phleum pretense L., and Vulpia myuros (L.) C.C.Gmel. The extract was then purified by several chromatographic steps, and two allelopathic substances were isolated and determined by spectral data to be (+)-rhododendrol and 9-epi-blumenol C. The compound inhibited the growth of cress and L. multiflorum. M. glyptostroboides is a deciduous perennial tree, and accumulation of its fallen leaves occur on the soil under the trees. Therefore, those allelopathic substances in the fallen leaves may be liberated into the rhizosphere soil during the decomposition process of fallen leaves and provide a competitive advantage for M. glyptostrob through the growth inhibition of competing plant species nearby. Therefore, M. glyptostroboides is allelopathic, and (+)-rhododendrol and 9-epi-blumenol C may be contribute to the allelopathy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Stephan Unger ◽  
Franziska M. Habermann ◽  
Katarina Schenke ◽  
Marjan Jongen

Arbuscular mycorrhizal fungi (AMF) may affect competitive plant interactions, which are considered a prevalent force in shaping plant communities. Aiming at understanding the role of AMF in the competition between two pasture species and its dependence on soil nutritional status, a pot experiment with mycorrhizal and non-mycorrhizal Lolium multiflorum and Trifolium subterraneum was conducted, with manipulation of species composition (five levels), and nitrogen (N)- and phosphorus (P)- fertilization (three levels). In the non-mycorrhizal state, interspecific competition did not play a major role. However, in the presence of AMF, Lolium was the strongest competitor, with this species being facilitated by Trifolium. While N-fertilization did not change the competitive balance, P-fertilization gave Lolium, a competitive advantage over Trifolium. The effect of AMF on the competitive outcome may be driven by differential C-P trade benefits, with Lolium modulating carbon investment in the mycorrhizal network and the arbuscule/vesicle ratio at the cost of Trifolium.


2021 ◽  
Vol 32 (6) ◽  
pp. e21679
Author(s):  
Liz Anaya L. ◽  
Amparo Huamán C. ◽  
Felipe San Martín H. ◽  
Miguel Ara G. ◽  
Fernando Carcelén C. ◽  
...  

Se realizó una primera aproximación de la carga animal óptima en cuyes al pastoreo durante la época lluviosa en la sierra del Perú, utilizando una pastura perenne asociada conformada por Lolium multiflorum, Lolium perenne, Dactylis glomerata, Trifolium pratense, Trifolium repens y Medicago sativa en función a la ganancia de peso vivo individual y por unidad de área, consumo de alimento, conversión alimenticia, rendimiento de pastura, costos de producción y ratio beneficio costo. Se emplearon 132 cuyes machos G de 15 días de edad en un diseño de bloques completos al azar con tres ciclos de engorde de 60 días como bloque y cuatro tratamientos correspondientes a cargas de 400 (T1), 500 (T2), 600 (T3) y 700 (T4) cuyes/ha/año. Se trabajó en áreas de 200 m2 de pastura donde pastorearon grupos de 8, 10, 12 y 14 cuyes en T1, T2, T3 y T4, respectivamente. Los resultados demostraron que no hubo efecto de la carga animal sobre la ganancia de peso individual, consumo de alimento, conversión alimenticia y rendimiento de pastura (p>0.05). Los efectos sobre la ganancia por unidad de área y ratio beneficio costo (p<0.05) fueron consecuencia directa y esperada del diferente número de animales entre cargas animales. El rango de carga animal fue insuficiente para determinar una carga óptima, de manera que tentativamente se sugiere utilizar la carga de 700 cuyes/ha/año, por ser la carga que favorece lograr más cuyes con parámetros productivos similares a cargas menores y mejores parámetros económicos.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1272
Author(s):  
Vijaya Bhaskar Alwarnaidu Vijayarajan ◽  
Patrick D Forristal ◽  
Sarah K Cook ◽  
David Schilder ◽  
Jimmy Staples ◽  
...  

Understanding the resistance spectrum and underlying genetic mechanisms is critical for managing herbicide-resistant populations. In this study, resistance to acetyl CoA carboxylase (ACCase) and acetolactate synthase (ALS) inhibitors was investigated in four suspected resistant populations of Alopecurus myosuroides (ALOMY-001 to ALOMY-004) and Lolium multiflorum (LOLMU-001 to LOLMU-004), collected from cereal production fields in Ireland. Glasshouse assays with three ALOMY-active herbicides [propaquizafop, cycloxydim (ACCase) and mesosulfuron + iodosulfuron (ALS)] or five LOLMU-active herbicides [pinoxaden, propaquizafop, cycloxydim (ACCase) and mesosulfuron + iodosulfuron, pyroxsulam (ALS)], and target-site resistance mechanism studies, based on pyrosequencing, were carried out in each of those populations. For A. myosuroides, Ile-1781-Leu ACCase mutation contributed to propaquizafop and cycloxydim resistance (shoot dry weight GR50 resistance factor (RF) = 7.5–35.5) in all ALOMY populations, and the independent Pro-197-Thr or Pro-197-Ser ALS mutation contributed to mesosulfuron + iodosulfuron resistance (RF = 3.6–6.6), in ALOMY-002 to ALOMY-004. Most of the analyzed plants for these mutations were homo/heterozygous combinations or only heterozygous. For L. multiflorum, phenotypic resistance to mesosulfuron + iodosulfuron (RF = 11.9–14.6) and pyroxsulam (RF = 2.3–3.1) was noted in all LOLMU populations, but the Pro-197-Gln or Pro-197-Leu ALS mutation (mostly in homozygous status) was identified in LOLMU-001, LOLMU-002 and LOLMU-004 only. Additionally, despite no known ACCase mutations in any LOLMU populations, LOLMU-002 survived pinoxaden and propaquizafop application (RF = 3.4 or 1.3), and LOLMU-003 survived pinoxaden (RF = 2.3), suggesting the possibility of non-target-site resistance mechanisms for ACCase and/or ALS resistance in these populations. Different resistance levels, as evidenced by a reduction in growth as dose increased above field rates in ALOMY and LOLMU, were due to variations in mutation rate and the level of heterozygosity, resulting in an overall resistance rating of low to moderate. This is the first study confirming cross- and multiple resistance to ACCase- and ALS-inhibiting herbicides, highlighting that resistance monitoring in A. myosuroides and L. multiflorum in Ireland is critical, and the adoption of integrated weed management strategies (chemical and non-chemical/cultural strategies) is essential.


Sign in / Sign up

Export Citation Format

Share Document