scholarly journals ?-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human ?-adrenergic receptor

2003 ◽  
Vol 59 (2) ◽  
pp. 288-296 ◽  
Author(s):  
G TAVERNIER ◽  
G TOUMANIANTZ ◽  
M ERFANIAN ◽  
M HEYMANN ◽  
K LAURENT ◽  
...  
1970 ◽  
Vol 23 (03) ◽  
pp. 417-422 ◽  
Author(s):  
D. G McKay ◽  
J.-G Latour ◽  
Mary H. Parrish

SummaryThe infusion of epinephrine in high doses produces disseminated intravascular coagulation by activation of Hageman factor. The effect is blocked by phenoxybenz-amine and is therefore due to stimulation of α-adrenergic receptor sites.


2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S87-S88
Author(s):  
Kuzhali Muthumalaiappan ◽  
Maria Camargo Johnson ◽  
Julia Walczak ◽  
Vimal Subramaniam ◽  
Anthony J Baldea ◽  
...  

Abstract Introduction Previous burn and traumatic injury studies have established that adrenergic signaling is increased after burn injury and may lead to an impairment of hematopoietic cell development in the bone marrow (BM). Nonetheless, mesenchymal stem cells (MSCs), which have gained momentum in regenerative medicine also play a predominant role in the BM niche. Understanding the propensity of the adrenergic receptor (AR) response by MSCs can be utilized for devising targeted therapies. However, the traditional plastic adherence procedure using ex vivo culture of BM cells for several weeks may skew the actual characteristics of MSCs. Our current study focused on isolating MSCs from freshly obtained BM in a murine scald burn model with a goal to characterize the expression pattern of native AR subgroups present on BM MSCs as compared to sham mice. Methods Eight, two-month-old adult female mice were subjected to a 15% total body 3rd degree burn or sham burn. The mice were sacrificed 7 days later. Femurs were removed and total bone marrow cells were flushed out. Multi parametric flow cytometry was used to gate for cells negative for hematopoietic cell markers (CD45, CD11B) and positive for MSC markers (CD105, CD106, SSEA, Ly6A) and AR subgroups (α1, α2, β1, β2, β3). We measured the number of BM MSCs, quantified the subtypes of ARs present on MSCs, and compared the ratio of AR antibody binding per total MSC population. Results Overall the frequency of MSCs per million total BM cells decreased by 48% post-burn injury with165,300 ± 194 in sham versus 110,000 ± 30 in burn displayed as bar graph in Panel A. Over 90% of MSCs consistently express β2 AR and only 10% express α2 AR subgroup in both scald and sham burn. Presence of other subgroups ranged from 50% to 80% of MSCs as seen in histograms to the right of dotted line in Panel B. Our AR propensity score based on AR mean fluorescence intensity adjusted to total number of MSCs present was increased by 2.8-fold for α1, 2.5-fold for β1, 1.6-fold for β3, and 1.3-fold for β2 AR subgroups (Panel C). These findings indicate burn injury not only decreases the frequency of BM MSCs but also increases the affinity of certain AR subgroups present on MSCs. Since BM MSCs are the major source of cytokines, chemokines and growth factors; detailed studies on AR mediated signaling in BM MSCs is warranted. Conclusions Polarization of AR signaling in BM MSCs by burn-induced catecholamines may have broader implications for comorbidities such as bone resorption and muscle wasting observed in human patients post burn trauma.


2014 ◽  
Vol 112 (11) ◽  
pp. 951-959 ◽  
Author(s):  
Morten Eriksen ◽  
Arnfinn Ilebekk ◽  
Alessandro Cataliotti ◽  
Cathrine Rein Carlson ◽  
Torstein Lyberg ◽  
...  

SummaryBradykinin (BK) receptor-2 (B2R) and β2-adrenergic receptor (β2AR) have been shown to form heterodimers in vitro. However, in vivo proofs of the functional effects of B2R-β2AR heterodimerisation are missing. Both BK and adrenergic stimulation are known inducers of tPA release. Our goal was to demonstrate the existence of B2R-β2AR heterodimerisation in myocardium and to define its functional effect on cardiac release of tPA in vivo. We further investigated the effects of a non-selective β-blocker on this receptor interplay. To investigate functional effects of B2R-β2AR heterodimerisation (i. e. BK transactivation of β2AR) in vivo, we induced serial electrical stimulation of cardiac sympathetic nerves (SS) in normal pigs that underwent concomitant BK infusion. Both SS and BK alone induced increases in cardiac tPA release. Importantly, despite B2R desensitisation, simultaneous BK infusion and SS (BK+SS) was characterised by 2.3 ± 0.3-fold enhanced tPA release compared to SS alone. When β-blockade (propranolol) was introduced prior to BK+SS, tPA release was inhibited. A persistent B2R-β2AR heterodimer was confirmed in BK-stimulated and nonstimulated left ventricular myocardium by immunoprecipitation studies and under non-reducing gel conditions. All together, these results strongly suggest BK transactivation of β2AR leading to enhanced β2AR-mediated release of tPA. Importantly, non-selective β-blockade inhibits both SS-induced release of tPA and the functional effects of B2R-β2AR heterodimerisation in vivo, which may have important clinical implications.


JCI Insight ◽  
2017 ◽  
Vol 2 (17) ◽  
Author(s):  
Pierre-Yves Jean-Charles ◽  
Samuel Mon-Wei Yu ◽  
Dennis Abraham ◽  
Reddy Peera Kommaddi ◽  
Lan Mao ◽  
...  

1993 ◽  
Vol 264 (4) ◽  
pp. H1259-H1268 ◽  
Author(s):  
N. Uemura ◽  
D. E. Vatner ◽  
Y. T. Shen ◽  
J. Wang ◽  
S. F. Vatner

The goal of this study was to determine whether enhanced vascular responsiveness during the development of perinephritic hypertension is selective or nonspecific. The effects of graded infusions of norepinephrine (NE), phenylephrine (PE), angiotensin II (ANG II), and vasopressin (VP) were examined on mean arterial pressure, total peripheral resistance (TPR), and aortic pressure-diameter relationships in conscious dogs. NE increased TPR significantly greater (P < 0.01) in hypertension than normotension, as did PE infusion, whereas ANG II and VP increased TPR similarly before and after hypertension. Analysis of aortic pressure-diameter relationships also demonstrated significant (P < 0.05) shifts in response to NE and PE, but not ANG II and VP, during the development of hypertension. In normotensive dogs, low doses of ANG II infusion also enhanced the vasoconstrictor response not only to NE and PE but also to VP. In contrast to what was observed in hypertension, in the presence of ANG II infusion after ganglionic blockade, enhanced responses to PE and NE were no longer observed. The alpha 1-adrenergic receptor density in membrane preparations from aortic tissue, as determined by [3H]prazosin binding, was higher (P < 0.05) in hypertensive dogs than control dogs. Thus the vascular responsiveness in the aorta and resistance vessels is enhanced to alpha 1-adrenergic stimulation, but not to all vasoconstrictors, during developing perinephritic hypertension. The mechanism appears to involve increased alpha 1-adrenergic receptor density.


2018 ◽  
Vol 151 (2) ◽  
pp. 131-145 ◽  
Author(s):  
Duilio M. Potenza ◽  
Radoslav Janicek ◽  
Miguel Fernandez-Tenorio ◽  
Emmanuel Camors ◽  
Roberto Ramos-Mondragón ◽  
...  

During physical exercise or stress, the sympathetic system stimulates cardiac contractility via β-adrenergic receptor (β-AR) activation, resulting in protein kinase A (PKA)–mediated phosphorylation of the cardiac ryanodine receptor RyR2. PKA-dependent “hyperphosphorylation” of the RyR2 channel has been proposed as a major impairment that contributes to progression of heart failure. However, the sites of PKA phosphorylation and their phosphorylation status in cardiac diseases are not well defined. Among the known RyR2 phosphorylation sites, serine 2030 (S2030) remains highly controversial as a site of functional impact. We examined the contribution of RyR2-S2030 to Ca2+ signaling and excitation–contraction coupling (ECC) in a transgenic mouse with an ablated RyR2-S2030 phosphorylation site (RyR2-S2030A+/+). We assessed ECC gain by using whole-cell patch–clamp recordings and confocal Ca2+ imaging during β-ARs stimulation with isoproterenol (Iso) and consistent SR Ca2+ loading and L-type Ca2+ current (ICa) triggering. Under these conditions, ECC gain is diminished in mutant compared with WT cardiomyocytes. Resting Ca2+ spark frequency (CaSpF) with Iso is also reduced by mutation of S2030. In permeabilized cells, when SR Ca2+ pump activity is kept constant (using 2D12 antibody against phospholamban), cAMP does not change CaSpF in S2030A+/+ myocytes. Using Ca2+ spark recovery analysis, we found that mutant RyR Ca2+ sensitivity is not enhanced by Iso application, contrary to WT RyRs. Furthermore, ablation of RyR2-S2030 prevents acceleration of Ca2+ waves and increases latency to the first spontaneous Ca2+ release after a train of stimulations during Iso treatment. Together, these results suggest that phosphorylation at S2030 may represent an important step in the modulation of RyR2 activity during β-adrenergic stimulation and a potential target for the development of new antiarrhythmic drugs.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Mohsin Khan ◽  
Sadia Mohsin ◽  
Daniele Avitabile ◽  
Jonathan Nguyen ◽  
Natalie Gude ◽  
...  

Rationale: Short term β-adrenergic stimulation promotes contractility in response to stress, but is ultimately detrimental in the failing heart due to accrual of cardiomyocyte death. Endogenous myocardial repair may partially offset cardiomyocyte losses, but consequences of long term β-adrenergic drive upon myocardial repair and regeneration are unknown. Objective: Modest recovery of cardiac contractility following long term β-adrenergic blockade in the clinical setting may depend, in part, upon restoration of endogenous repair therefore we sought to determine the relationship between β-adrenergic activity and regulation of cardiac progenitor cell (CPC) function and influence upon myocardial repair. Methods and results: Mouse and human CPCs express only β2 adrenergic receptor (β2-AR) in conjunction with stem cell marker c-kit. Activation of β2-AR signaling promotes proliferation associated with increased Akt phosphorylation, up-regulation of eNOS and cyclin D1, and decreased levels of GRK2. Conversely, silencing of β2-AR expression or treatment with β2-antagonist ICI 118, 551 impairs proliferation and survival. β1-AR expression in CPC is induced by differentiation stimuli, sensitizing CPC to isoproterenol-induced cell death that is abrogated by the β1-AR specific antagonist metoprolol. Efficacy of β1-AR blockade by metoprolol to increase CPC survival and proliferation was confirmed in vivo by adoptive transfer of CPC into failing mouse myocardium, concomitant with increased ejection fraction, fractional shortening and hemodynamic performance. Conclusions: β-adrenergic stimulation promotes expansion and survival of CPCs through β2-AR, but acquisition of β1-AR upon commitment to the myocyte lineage results in loss of early myocyte precursors and ineffective myocardial repair. Thus, β1-AR-specific blockade is likely to provide for enhanced CPC participation in recovery of function in the failing heart.


2000 ◽  
Vol 278 (3) ◽  
pp. H971-H981 ◽  
Author(s):  
Robert Gyurko ◽  
Peter Kuhlencordt ◽  
Mark C. Fishman ◽  
Paul L. Huang

To study the role of endothelial nitric oxide synthase (eNOS) in cardiac function, we compared eNOS expression, contractility, and relaxation in the left ventricles of wild-type and eNOS-deficient mice. eNOS immunostaining is localized to the macro- and microvascular endothelium throughout the myocardium in wild-type mice and is absent in eNOS−/− mice. Whereas blood pressure is elevated in eNOS−/− mice, baseline cardiac contractility (dP/d t max) is similar in wild-type and eNOS−/− mice (9,673 ± 2,447 and 9,928 ± 1,566 mmHg/s, respectively). The β-adrenergic agonist isoproterenol (Iso) at doses of ≥1 ng causes enhanced increases in dP/d t max in eNOS−/− mice compared with wild-type controls in vivo ( P < 0.01) as well as in Langendorff isolated heart preparations ( P < 0.02). β-Adrenergic receptor binding (Bmax) is not significantly different in the two groups of animals (Bmax = 41.4 ± 9.4 and 36.1 ± 5.1 fmol/mg for wild-type and eNOS−/−). Iso-stimulated ventricular relaxation is also enhanced in the eNOS−/− mice, as measured by dP/d t min in the isolated heart. However, baseline ventricular relaxation is normal in eNOS−/− mice (τ = 5.2 ± 1.0 and 5.6 ± 1.5 ms for wild-type and eNOS−/−, respectively), whereas it is impaired in wild-type mice after NOS inhibition (τ = 8.3 ± 2.4 ms). cGMP levels in the left ventricle are unaffected by eNOS gene deletion (wild-type: 3.1 ± 0.8 pmol/mg, eNOS−/−: 3.1 ± 0.6 pmol/mg), leading us to examine the level of another physiological regulator of cGMP. Atrial natriuretic peptide (ANP) expression is markedly upregulated in the eNOS−/− mice, and exogenous ANP restores ventricular relaxation in wild-type mice treated with NOS inhibitors. These results suggest that eNOS attenuates both inotropic and lusitropic responses to β-adrenergic stimulation, and it also appears to regulate baseline ventricular relaxation in conjunction with ANP.


1993 ◽  
Vol 265 (2) ◽  
pp. H494-H503 ◽  
Author(s):  
J. G. Dobson ◽  
R. A. Fenton

Because adenosine has an antiadrenergic action in the heart, young (3-4 mo) and aged (18-20 mo) adult Sprague-Dawley and Fischer 344 rat hearts were perfused to determine whether interstitial adenosine plays a role in the reduced metabolic and mechanical responsiveness of the aged heart to beta-adrenergic stimulation. Interstitial adenosine was approximately twofold greater in aged hearts compared with young adult hearts, and 10(-8) M isoproterenol (ISO) further increased these levels. ISO increased myocardial adenosine 3',5'-cyclic monophosphate content, glycogen phosphorylase activity, and cardiac contractility by 83, 150, and 130%, respectively, in young hearts but only increased these variables by 45, 74, and 61%, respectively, in aged hearts. Sulfophenyl-theophylline prevented the reduced ISO-induced responsiveness of the above variables in aged hearts. Exogenously administered adenosine deaminase eliminated the reduced ISO-induced contractile responsiveness in aged hearts. The apparent activities of 5'-nucleotidase and adenosine deaminase were not significantly different in ventricular samples from young and aged hearts. These results suggest that the elevated interstitial level of adenosine exerts a greater antiadrenergic effect in the aged heart, rendering it less responsive to beta-adrenergic stimulation. The increased interstitial level of adenosine in the aged heart does not appear to be due to a difference in the activities of either 5'-nucleotidase or adenosine deaminase.


1980 ◽  
Vol 239 (2) ◽  
pp. G99-G105 ◽  
Author(s):  
R. J. Parod ◽  
B. A. Leslie ◽  
J. W. Putney

Rat lacrimal gland acinar cells were isolated and observed to be physiologically stable for several hours of incubation in vitro. With a double-isotope technique, it was found that carbachol and epinephrine stimulated the uptake of 22Na and 45Ca by lacrimal cells. These respnses were maximal at agonist concentrations of 10(-5) M and were blocked by atropine and phentolamine, respectively. It is concluded that muscarinic and alpha-adrenergic receptor activation increase the membrane permeability of the lacrimal gland acinar cell to Na and Ca, ions that may be important in the secretion of water by the lacrimal gland.


Sign in / Sign up

Export Citation Format

Share Document