aortic tissue
Recently Published Documents


TOTAL DOCUMENTS

485
(FIVE YEARS 107)

H-INDEX

38
(FIVE YEARS 3)

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Ashley Dawson ◽  
Yanming Li ◽  
Yang Li ◽  
Pingping Ren ◽  
Hernan G. Vasquez ◽  
...  

The molecular and cellular processes leading to aortic aneurysm development in Marfan syndrome (MFS) remain poorly understood. In this study, we examined the changes of aortic cell populations and gene expression in MFS by performing single-cell RNA sequencing (scRNA seq) on ascending aortic aneurysm tissues from patients with MFS (n = 3) and age-matched non-aneurysmal control tissues from cardiac donors and recipients (n = 4). The expression of key molecules was confirmed by immunostaining. We detected diverse populations of smooth muscle cells (SMCs), fibroblasts, and endothelial cells (ECs) in the aortic wall. Aortic tissues from MFS showed alterations of cell populations with increased de-differentiated proliferative SMCs compared to controls. Furthermore, there was a downregulation of MYOCD and MYH11 in SMCs, and an upregulation of COL1A1/2 in fibroblasts in MFS samples compared to controls. We also examined TGF-β signaling, an important pathway in aortic homeostasis. We found that TGFB1 was significantly upregulated in two fibroblast clusters in MFS tissues. However, TGF-β receptor genes (predominantly TGFBR2) and SMAD genes were downregulated in SMCs, fibroblasts, and ECs in MFS, indicating impairment in TGF-β signaling. In conclusion, despite upregulation of TGFB1, the rest of the canonical TGF-β pathway and mature SMCs were consistently downregulated in MFS, indicating a potential compromise of TGF-β signaling and lack of stimulus for SMC differentiation.


2021 ◽  
Vol 23 (1) ◽  
pp. 315
Author(s):  
Risa Nonaka ◽  
Takafumi Iesaki ◽  
Aurelien Kerever ◽  
Eri Arikawa-Hirasawa

Perlecan (HSPG2), a basement membrane-type heparan sulfate proteoglycan, has been implicated in the development of aortic tissue. However, its role in the development and maintenance of the aortic wall remains unknown. Perlecan-deficient mice (Hspg2−/−-Tg: Perl KO) have been found to show a high frequency (15–35%) of aortic dissection (AD). Herein, an analysis of the aortic wall of Perl KO mice revealed that perlecan deficiency caused thinner and partially torn elastic lamina. Compared to the control aortic tissue, perlecan-deficient aortic tissue showed a significant decrease in desmosine content and an increase in soluble tropoelastin levels, implying the presence of immature elastic fibers in Perl KO mice. Furthermore, the reduced expression of the smooth muscle cell contractile proteins actin and myosin in perlecan-deficient aortic tissue may explain the risk of AD. This study showed that a deficiency in perlecan, which is localized along the elastic lamina and at the interface between elastin and fibrillin-1, increased the risk of AD, largely due to the immaturity of extracellular matrix in the aortic tissue. Overall, we proposed a new model of AD that considers the deficiency of extracellular molecule perlecan as a risk factor.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bi Huang ◽  
Li Tian ◽  
Zhaoran Chen ◽  
Liang Zhang ◽  
Wenjun Su ◽  
...  

Biomarker-assisted diagnosis of acute aortic dissection (AAD) is important for initiation of treatment and improved survival. However, identification of biomarkers for AAD in blood is a challenging task. The present study aims to find the potential AAD biomarkers using a transcriptomic strategy. Arrays based genome-wide gene expression profiling were performed using ascending aortic tissues which were collected from AAD patients and healthy donors. The differentially expressed genes were validated using quantitative reverse transcriptase PCR (qRT-PCR) and western blot. The plasma levels of a potential biomarker, angiopoietin 2 (ANGPT2) were determined in case-control cohort (77 AAD patients and 82 healthy controls) by enzyme linked immunosorbent assay. Receiver operating characteristic curve (ROC) was used to evaluate the diagnostic power of ANGPT2 for AAD. Transcriptome data demonstrated that a total of 18 genes were significantly up-regulated and 28 genes were significantly down-regulated among AAD tissues (foldchange>3.0, p < 0.01). By bioinformatic analysis, we identified ANGPT2 as a candidate biomarker for blood-based detection of AAD. The qRT-PCR and protein expression demonstrated that ANGPT2 increased 2.4- and 4.2 folds, respectively in aortic tissue of AAD patients. Immunohistochemical staining demonstrated that ANGPT2 was markedly increased in intima of the aortic wall in AAD. Furthermore, ANGPT2 was significantly elevated in AAD patients as compared with controls (median 1625 vs. 383 pg/ml, p < 1E-6). ROC curve analysis showed that ANGPT2 was highly predictive of a diagnosis of type A AAD (area under curve 0.93, p < 1E-6). Sensitivity and specificity were 81 and 90%, respectively at the cutoff value of 833 pg/ml. In conclusion, ANGPT2 could be a promising biomarker for diagnosis of AAD; however, more studies are still needed to verify its specificity in diagnosing of AAD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yinyin Zhang ◽  
Yingmei Li ◽  
Weijie Cao ◽  
Fang Wang ◽  
Xinsheng Xie ◽  
...  

Cellular immunotherapy represented by CD19-directed chimeric antigen receptor T (CAR-T) cells has achieved great success in recent years. An increasing number of CAR-T therapies are being developed for cancer treatment, but the frequent and varied adverse events, such as “on-target, off-tumor toxicity”, limit CAR-T application. Here, we identify the target antigen expression patterns of CAR therapies in 18 tissues and organs (peripheral blood mononuclear cells, bone marrow, lymph nodes, spleen, heart, ascending aortic tissue, trachea, lung, skin, kidney, bladder, esophagus, stomach, small intestine, rectum, liver, common bile duct, and pancreas) from healthy human samples. The atlas determines target antigens expressed on some normal cell types, which facilitates elucidating the cause of “on-target, off-tumor toxicity” in special tissues and organs by targeting some antigens, but not others. Moreover, we describe the target antigen expression patterns of B-lineage-derived malignant cells, acute myeloid leukemia (AML), and solid tumors. Overall, the present study indicates the pathogenesis of “on-target, off-tumor toxicity” during CAR therapies and provides guidance on taking preventive measures during CAR treatment.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael DeBrota ◽  
Muhammad Idrees ◽  
Benjamin Landis

Background and Hypothesis: Thoracic aortic aneurysm (TAA) histopathology includes elastic fiber (EF) abnormalities, mucoid extracellular matrix (MECM) accumulation, and smooth muscle derangement in the aortic medial layer. While semi-quantitative grading of these characteristics is a standard practice, computational characterization of medial layer components may facilitate novel quantitative analyses at higher throughput. We hypothesized that computational results would correlate with results of semi-quantitative grading of aortic histopathology. Experimental Design: Formalin-fixed, paraffin-embedded human aortic tissue sections were stained with Movat’s pentachrome to characterize aortic microstructure. Sections were also immunostained for nitrotyrosine residues to assess oxidative stress. Samples were initially graded semi-quantitatively by two independent blinded readers. Next, computational histopathology software was used a) to quantify the proportions of EF, MECM, and cellular area in the medial layer of pentachrome-stained sections and b) to quantify the distribution and intensity of positive nitrotyrosine staining in immunostained sections. Association between semi-quantitative grading and computed values was tested with ANOVA. Results: The cohort included 74 participants who underwent prophylactic aortic replacement for TAA and 23 healthy controls. The mean age was 54±17 years. On average, EFs accounted for 49% (range 6-90%) of medial tissue area, whereas MECM accounted for 25% (1-73%). The overall semi-quantitative grade of medial degeneration severity was associated with decrease in EF fraction (p=0.02). The grade of EF thinning also strongly correlated with decrease in EF fraction (p=1x10-6). Meanwhile, grade for accumulation of MECM was associated with increase in MECM (p=0.004). Increased semi-quantitative grading for nitrotyrosine levels was associated with increased nuclear signal optical density (p=9x10-10) and greater percentage of cells labeled as strongly positive (p=8x10-10). Conclusion and Potential Impact: We observed significant correlations between computed quantitative values and semi-quantitative grading. This suggests that computational histopathology is a valid method for investigation of human TAA tissues.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Willa Sasso ◽  
Leni Moldovan ◽  
Michael Murphy

Background/ Objective: Abdominal aortic aneurysm (AAA) is an epigenetic event characterized by chronic inflammation and degeneration of the aortic wall leading to catastrophic rupture. Cigarette smoke exposure is the greatest environmental risk factor associated with AAA development. MicroRNAs (miRNA) regulate gene expression and may play a role in smoking-induced aortic inflammation. Epigenetic changes could include dysregulation of miRNA, causing post-transcriptional abnormalities pathogenic to AAA.     Methods: miRNA was extracted from plasma of 24 AAA patients and 7 risk factor matched (RFM) patients and analyzed by RNA sequencing. We compared previous (PS) and current smokers (CS) within and between both patient cohorts. Differential expression of miRNAs was analyzed by ANOVA (p≤ 0.05). Potential targets of significant differentially expressed miRNAs were predicted using cross-analysis of TargetScan and miRanda databases.     Results: Analysis revealed 7 significantly different miRNAs between AAA CS and AAA PS and 6 significantly different miRNAs between RFM CS and RFM PS. Of greatest significance, hsa-miR-223-3p was significantly downregulated as an effect of smoking cessation in AAA PS compared to AAA CS (p=0.000263), while also showing clinically relevant expression levels. Target genes of hsa-miR-223-3p include pro-inflammatory factors IL-6, TNFα, TGFβ, and MCP-1. Speculatively, as tissue levels of miR-223 tend to inversely correlate with plasma levels, we could hypothesize that the observed plasma upregulation of hsa-miR-223-3p in AAA CS contributes to the pro-inflammatory microenvironment of aortic tissue.     Conclusion: Cigarette smoke contributes to epigenetic changes impacting factors of immune regulation or inflammation, eventually leading to disease states such as AAA. Inflammatory-related hsa-miR-223-3p is upregulated in AAA CS, suggesting its potential role in the disease course.     Implications: Upregulation of hsa-miR-223-3p in AAA CS offers a link between disease state and the number one environmental factor attributed to AAA. This signature miRNA could serve as a biomarker for AAA or as a potential therapy target.  


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Haixia Sun ◽  
Jinhua Feng ◽  
Yan Ma ◽  
Ding Cai ◽  
Yulu Luo ◽  
...  

AbstractEvidence has demonstrated that microRNA-342-5p (miR-342-5p) is implicated in atherosclerosis (AS), but little is known regarding its intrinsic regulatory mechanisms. Here, we aimed to explore the effect of miR-342-5p targeting Wnt3a on formation of vulnerable plaques and angiogenesis of AS. ApoE−/− mice were fed with high-fat feed for 16 w to replicate the AS vulnerable plaque model. miR-342-5p and Wnt3a expression in aortic tissues of AS were detected. The target relationship between miR-342-5p and Wnt3a was verified. Moreover, ApoE−/− mice were injected with miR-342-5p antagomir and overexpression-Wnt3a vector to test their functions in serum lipid levels, inflammatory and oxidative stress-related cytokines, aortic plaque stability and angiogenesis in plaque of AS mice. miR-342-5p expression was enhanced and Wnt3a expression was degraded in aortic tissues of AS mice and miR-342-5p directly targeted Wnt3a. Up-regulating Wnt3a or down-regulating miR-342-5p reduced blood lipid content, inflammatory and oxidative stress levels, the vulnerability of aortic tissue plaque and inhibited angiogenesis in aortic plaque of AS mice. Functional studies show that depleting miR-342-5p can stabilize aortic tissue plaque and reduce angiogenesis in plaque in AS mice via restoring Wnt3a.


2021 ◽  
Author(s):  
VISHAKHA JADAUN ◽  
Nitin Singh

Abstract Aortic dissection is a serious pathology involving the vessel wall of the aorta with significant societal impact. To understand aortic dissection we explain the role of the dynamic pathology in the absence or presence of structural and/or functional abnormalities. We frame a differential equation to evaluate the impact of mean blood pressure on the aortic wall and prove the existence and uniqueness of its solution for homeostatic recoil and relaxation for infinitesimal aortic tissue. We model and analyze generalized (3+1)-dimensional nonlinear partial differential equation for aortic wave dynamics. We use the Lie group of transformations on this nonlinear evolution equation to obtain invariant solutions, traveling wave solutions including solitons. We find that abnormalities in the dynamic pathology of aortic dissection act as triggers for the progression of disease in early-stage through the formation of soliton-like pulses and their interaction. We address the role of unstable wavefields in waveform dynamics when waves are unidirectional. Moreover, the notion of dynamic pathology within the domain of vascular geometry may explain the evolution of aneurysms in cerebral arteries and cardiomyopathies even in the absence of anatomical and physiological abnormalities.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cédric H. G. Neutel ◽  
Giulia Corradin ◽  
Pauline Puylaert ◽  
Guido R. Y. De Meyer ◽  
Wim Martinet ◽  
...  

Measuring arterial stiffness has recently gained a lot of interest because it is a strong predictor for cardiovascular events and all-cause mortality. However, assessing blood vessel stiffness is not easy and the in vivo measurements currently used provide only limited information. Ex vivo experiments allow for a more thorough investigation of (altered) arterial biomechanical properties. Such experiments can be performed either statically or dynamically, where the latter better corresponds to physiological conditions. In a dynamic setup, arterial segments oscillate between two predefined forces, mimicking the diastolic and systolic pressures from an in vivo setting. Consequently, these oscillations result in a pulsatile load (i.e., the pulse pressure). The importance of pulse pressure on the ex vivo measurement of arterial stiffness is not completely understood. Here, we demonstrate that pulsatile load modulates the overall stiffness of the aortic tissue in an ex vivo setup. More specifically, increasing pulsatile load softens the aortic tissue. Moreover, vascular smooth muscle cell (VSMC) function was affected by pulse pressure. VSMC contraction and basal tonus showed a dependence on the amplitude of the applied pulse pressure. In addition, two distinct regions of the aorta, namely the thoracic descending aorta (TDA) and the abdominal infrarenal aorta (AIA), responded differently to changes in pulse pressure. Our data indicate that pulse pressure alters ex vivo measurements of arterial stiffness and should be considered as an important variable in future experiments. More research should be conducted in order to determine which biomechanical properties are affected due to changes in pulse pressure. The elucidation of the underlying pulse pressure-sensitive properties would improve our understanding of blood vessel biomechanics and could potentially yield new therapeutic insights.


2021 ◽  
Author(s):  
Hai Dong ◽  
Minliang Liu ◽  
Tongran Qin ◽  
Liang Liang ◽  
Bulat Ziganshin ◽  
...  

Ascending aortic aneurysms (AsAA) often include the dilatation of sinotubular junction (STJ) which usually leads to aortic insufficiency. The novel surgery of the V-shape resection of the noncoronary sinus, for treatment of AsAA with root ectasia, has been shown to be a simpler procedure compared to traditional surgeries. Our previous study showed that the repaired aortic root aneurysms grew after the surgery. In this study, we developed a novel computational growth framework to model the growth of the aortic root repaired by the V-shape surgery. Specifically, the unified-fiber-distribution (UFD) model was applied to describe the hyperelastic deformation of the aortic tissue. A novel kinematic growth evolution law was proposed based on existing observations that the growth rate is linearly dependent on the wall stress. Moreover, we also obtained patient-specific geometries of the repaired aortic root post-surgery at two follow-up time points (Post1 and Post2) for 5 patients, based on clinical CT images. The novel computational growth framework was implemented into the Abaqus UMAT user subroutine and applied to model the growth of the aortic root from Post1 to Post2. Patient-specific growth parameters were obtained by an optimization procedure. The predicted geometry and stress of the aortic root at Post2 agree well with the in vivo results. The novel computational growth framework and the optimized growth parameters could be applied to predict the growth of repaired aortic root aneurysms for new patients and to optimize repair strategies for AsAA.


Sign in / Sign up

Export Citation Format

Share Document