Effects of nitric oxide synthase inhibition on the muscle blood flow response to exercise in rats with heart failure

1995 ◽  
Vol 30 (3) ◽  
pp. 469-476 ◽  
Author(s):  
T. Hirai ◽  
R. Zelis ◽  
T. I. Musch
Heart ◽  
2012 ◽  
Vol 98 (Suppl 1) ◽  
pp. A60.2-A61
Author(s):  
H Shabeeh ◽  
N Melikian ◽  
R Dworakowski ◽  
B Casadei ◽  
P Chowienczyk ◽  
...  

2020 ◽  
Vol 120 (4) ◽  
pp. 763-764
Author(s):  
Alexandra Woloschuk ◽  
Gary J. Hodges ◽  
Raffaele J. Massarotto ◽  
Panagiota Klentrou ◽  
Bareket Falk

2010 ◽  
Vol 109 (3) ◽  
pp. 768-777 ◽  
Author(s):  
William G. Schrage ◽  
Brad W. Wilkins ◽  
Christopher P. Johnson ◽  
John H. Eisenach ◽  
Jacqueline K. Limberg ◽  
...  

The vasodilator signals regulating muscle blood flow during exercise are unclear. We tested the hypothesis that in young adults leg muscle vasodilation during steady-state exercise would be reduced independently by sequential pharmacological inhibition of nitric oxide synthase (NOS) and cyclooxygenase (COX) with NG-nitro-l-arginine methyl ester (l-NAME) and ketorolac, respectively. We tested a second hypothesis that NOS and COX inhibition would increase leg oxygen consumption (V̇o2) based on the reported inhibition of mitochondrial respiration by nitric oxide. In 13 young adults, we measured heart rate (ECG), blood pressure (femoral venous and arterial catheters), blood gases, and venous oxygen saturation (indwelling femoral venous oximeter) during prolonged (25 min) steady-state dynamic knee extension exercise (60 kick/min, 19 W). Leg blood flow (LBF) was determined by Doppler ultrasound of the femoral artery. Whole body V̇o2 was measured, and leg V̇o2 was calculated from blood gases and LBF. Resting intra-arterial infusions of acetylcholine (ACh) and nitroprusside (NTP) tested inhibitor efficacy. Leg vascular conductance (LVC) to ACh was reduced up to 53 ± 4% by l-NAME + ketorolac infusion, and the LVC responses to NTP were unaltered. Exercise increased LVC from 4 ± 1 to 33.1 ± 2 ml·min−1·mmHg−1 and tended to decrease after l-NAME infusion (31 ± 2 ml·min−1·mmHg−1, P = 0.09). With subsequent administration of ketorolac LVC decreased to 29.6 ± 2 ml·min−1·mmHg−1 ( P = 0.02; n = 9). While exercise continued, LVC returned to control values (33 ± 2 ml·min−1·mmHg−1) within 3 min, suggesting involvement of additional vasodilator mechanisms. In four additional subjects, LVC tended to decrease with l-NAME infusion alone ( P = 0.08) but did not demonstrate the transient recovery. Whole body and leg V̇o2 increased with exercise but were not altered by l-NAME or l-NAME + ketorolac. These data indicate a modest role for NOS- and COX-mediated vasodilation in the leg of exercising humans during prolonged steady-state exercise, which can be restored acutely. Furthermore, NOS and COX do not appear to influence muscle V̇o2 in untrained healthy young adults.


2019 ◽  
Vol 120 (4) ◽  
pp. 753-762 ◽  
Author(s):  
Alexandra Woloschuk ◽  
Gary J. Hodges ◽  
Raffaele J. Massarotto ◽  
Panagiota Klentrou ◽  
Bareket Falk

2010 ◽  
Vol 588 (8) ◽  
pp. 1321-1331 ◽  
Author(s):  
Steven W. Copp ◽  
Daniel M. Hirai ◽  
Peter J. Schwagerl ◽  
Timothy I. Musch ◽  
David C. Poole

Sign in / Sign up

Export Citation Format

Share Document