An investigation on the use of tincal ore waste, fly ash, and coal bottom ash as Portland cement replacement materials

2002 ◽  
Vol 32 (2) ◽  
pp. 227-232 ◽  
Author(s):  
I Kula ◽  
A Olgun ◽  
V Sevinc ◽  
Y Erdogan
2021 ◽  
Vol 7 (1) ◽  
pp. 98-106
Author(s):  
Esperanza Menéndez ◽  
Cristina Argiz ◽  
Miguel Ángel Sanjuán

Coal fly ash (CFA), coal bottom ash (CBA) are residues produced in thermo-electrical power stations as result of the coal combustion in the same boiler. Therefore, some characteristics of the coal fly ash (CFA) are comparable with those of the coal bottom ash (CBA). Nevertheless, coal bottom ash size is larger than coal fly ash one. Consequently, it was found that it is necessary to grind the coal bottom ash (CBA) to reach a similar size to that one of the CFA. The objective of this paper is to evaluate the performance of Portland cement mortars made with coal fly ash (CFA), coal bottom ash (CBA) or mixes (CFA+CBA), against sulphate attack. The methodology is based on the expansion of slender bars submerged in a sodium sulphate solution (5%) according to the ASTM C-1012/C1012-13 standard. It has been found that mortars elaborated with CEM I 42.5 N (without ashes) presented the largest expansion (0.09%) after a testing period of 330 days. Mortars made with CEM II/A-V exhibited lower expansion (0.03%). Summing up, it can be established that mortar expansion decreases when the coal ash amount increases, independently of the type of coal ash employed. The novelty of this paper relies on the comparison between the performances of Portland cement mortars made with coal fly ash (CFA) or coal bottom ash (CBA) exposed to external sulphate attack. Doi: 10.28991/cej-2021-03091640 Full Text: PDF


2019 ◽  
Vol 45 (1) ◽  
pp. 45-56
Author(s):  
Luciano Moises SippertSantarema ◽  
Karine Da Rocha Alvesb ◽  
Sydney Sabedotc

J ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 223-232
Author(s):  
Esperanza Menéndez ◽  
Cristina Argiz ◽  
Miguel Ángel Sanjuán

Ground coal bottom ash is considered a novel material when used in common cement production as a blended cement. This new application must be evaluated by means of the study of its pozzolanic properties. Coal bottom ash, in some countries, is being used as a replacement for natural sand, but in some others, it is disposed of in a landfill, leading thus to environmental problems. The pozzolanic properties of ground coal bottom ash and coal fly ash cements were investigated in order to assess their pozzolanic performance. Proportions of coal fly ash and ground coal bottom ash in the mixes were 100:0, 90:10, 80:20, 50:50, 0:100. Next, multicomponent cements were formulated using 10%, 25% or 35% of ashes. In general, the pozzolanic performance of the ground coal bottom ash is quite similar to that of the coal fly ash. As expected, the pozzolanic reaction of both of them proceeds slowly at early ages, but the reaction rate increases over time. Ground coal bottom ash is a promising novel material with pozzolanic properties which are comparable to that of coal fly ashes. Then, coal bottom ash subjected to an adequate mechanical grinding is suitable to be used to produce common coal-ash cements.


2004 ◽  
Vol 34 (5) ◽  
pp. 731-735 ◽  
Author(s):  
F Canpolat ◽  
K Yılmaz ◽  
M.M Köse ◽  
M Sümer ◽  
M.A Yurdusev

2021 ◽  
Vol 879 ◽  
pp. 68-80
Author(s):  
Rahimah Embong ◽  
Andri Kusbiantoro ◽  
Azrina Abd Wahab ◽  
Khairunisa Muthusamy

Nowadays, intensive research in production of highly reactive pozzolanic materials from industrial waste to replace cement is crucial. This action expected to increase industrial waste recycling rate and at the same time reduce extraction of non-renewable resources of limestone. Unique characteristics of coal bottom ash as one of the industrial based pozzolan gained less popularity because of its low reactivity and heavy metal leaching due to conventional method used for disposal. Therefore, an alternative approach was deliberated in this research to utilize coal bottom ash into soluble form and enhance the quality of bottom ash as pozzolanic material. Coal bottom ash after the acid washing with optimum parameter was then undergoes solution-gelification process with various alkali based solution for 2 hours soaking durations. The conversion of coal bottom ash into soluble silica in this study demonstrates good pozzolanic performance in a state of siliceous gel pozzolan compared to the raw ones. 5% of cement replacement by soluble silica from CBA shows good strength development from early and later age. The physical dispersion effect is the cumulative effect of enhancement cement hydration due to the availability of increased the nucleation sites on soluble silica particles.


2016 ◽  
Vol 227 (3) ◽  
Author(s):  
Emelda Obianuju Orakwue ◽  
Varinporn Asokbunyarat ◽  
Eldon R. Rene ◽  
Piet N. L. Lens ◽  
Ajit Annachhatre

Sign in / Sign up

Export Citation Format

Share Document