scholarly journals Reactivity of Ground Coal Bottom Ash to Be Used in Portland Cement

J ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 223-232
Author(s):  
Esperanza Menéndez ◽  
Cristina Argiz ◽  
Miguel Ángel Sanjuán

Ground coal bottom ash is considered a novel material when used in common cement production as a blended cement. This new application must be evaluated by means of the study of its pozzolanic properties. Coal bottom ash, in some countries, is being used as a replacement for natural sand, but in some others, it is disposed of in a landfill, leading thus to environmental problems. The pozzolanic properties of ground coal bottom ash and coal fly ash cements were investigated in order to assess their pozzolanic performance. Proportions of coal fly ash and ground coal bottom ash in the mixes were 100:0, 90:10, 80:20, 50:50, 0:100. Next, multicomponent cements were formulated using 10%, 25% or 35% of ashes. In general, the pozzolanic performance of the ground coal bottom ash is quite similar to that of the coal fly ash. As expected, the pozzolanic reaction of both of them proceeds slowly at early ages, but the reaction rate increases over time. Ground coal bottom ash is a promising novel material with pozzolanic properties which are comparable to that of coal fly ashes. Then, coal bottom ash subjected to an adequate mechanical grinding is suitable to be used to produce common coal-ash cements.

2021 ◽  
Vol 7 (1) ◽  
pp. 98-106
Author(s):  
Esperanza Menéndez ◽  
Cristina Argiz ◽  
Miguel Ángel Sanjuán

Coal fly ash (CFA), coal bottom ash (CBA) are residues produced in thermo-electrical power stations as result of the coal combustion in the same boiler. Therefore, some characteristics of the coal fly ash (CFA) are comparable with those of the coal bottom ash (CBA). Nevertheless, coal bottom ash size is larger than coal fly ash one. Consequently, it was found that it is necessary to grind the coal bottom ash (CBA) to reach a similar size to that one of the CFA. The objective of this paper is to evaluate the performance of Portland cement mortars made with coal fly ash (CFA), coal bottom ash (CBA) or mixes (CFA+CBA), against sulphate attack. The methodology is based on the expansion of slender bars submerged in a sodium sulphate solution (5%) according to the ASTM C-1012/C1012-13 standard. It has been found that mortars elaborated with CEM I 42.5 N (without ashes) presented the largest expansion (0.09%) after a testing period of 330 days. Mortars made with CEM II/A-V exhibited lower expansion (0.03%). Summing up, it can be established that mortar expansion decreases when the coal ash amount increases, independently of the type of coal ash employed. The novelty of this paper relies on the comparison between the performances of Portland cement mortars made with coal fly ash (CFA) or coal bottom ash (CBA) exposed to external sulphate attack. Doi: 10.28991/cej-2021-03091640 Full Text: PDF


2016 ◽  
Vol 227 (3) ◽  
Author(s):  
Emelda Obianuju Orakwue ◽  
Varinporn Asokbunyarat ◽  
Eldon R. Rene ◽  
Piet N. L. Lens ◽  
Ajit Annachhatre

2020 ◽  
Vol 849 ◽  
pp. 108-112
Author(s):  
Widi Astuti ◽  
Agus Haerudin ◽  
Istihanah Nurul Eskani ◽  
Fajar Nurjaman ◽  
Aulia Pertiwi Tri Yuda ◽  
...  

Indonesia coal ash is predicted to reach 10.8 million tons in the year 2020 but its utilization is still limited. In the last decade, coal ash has become a promising REY source candidate. To determine the potency of REY in Indonesia coal ash, information about element concentration and mineralogy of the ash is essential. In this study, coal ash samples were taken from Paiton-2, Pacitan, Rembang, and Tanjung Jati coal-fired power plants. Element content and mineralogy were analyzed using Inductive Couple Plasma Mass Spectroscopy/Atomic Emission Spectroscopy (ICP-MS/AES), X-Ray Diffractometer (XRD) and petrographic. The results showed that coal fly ash and bottom ash contains critical REY in the range of 38% to 41% with Coutlook larger than one. XRD analysis showed that both fly ash and bottom ash have similar mineral phases with slightly different concentrations. The mineral phase is dominated by amorphous glass, quartz, Fe-bearing minerals, and unburned carbon. The amorphous glass phase in fly ash is in the range of 23 to 34% while in bottom ash between 14 and 34%. Unburned carbon content in fly ash and bottom ashes are 7-13% and 7-19%, respectively. Fe-bearing mineral content in fly ash is 15-20% and bottom ash is 13-20%. In addition, Indonesia coal ash has a higher Heavy-REY enrichment factor than Light-REY. The Enrichment Factor of HREY in fly ash is as much as 1.3 times (in average) of the bottom ash.


2020 ◽  
Vol 849 ◽  
pp. 102-107
Author(s):  
Widya Rosita ◽  
Dea Anisa Ayu Besari ◽  
I Made Bendiyasa ◽  
Indra Perdana ◽  
Ferian Anggara ◽  
...  

Indonesia coal ash is predicted to reach 10.8 million tons in the year 2020 but its utilization is still limited. In the last decade, coal ash has become a promising REY source candidate. To determine the potency of REY in Indonesia coal ash, information about element concentration and mineralogy of the ash is essential. In this study, coal ash samples were taken from Paiton-2, Pacitan, Rembang, and Tanjung Jati coal-fired power plants. Element content and mineralogy were analyzed using Inductive Couple Plasma Mass Spectroscopy/Atomic Emission Spectroscopy (ICP-MS/AES), X-Ray Diffractometer (XRD) and petrographic. The results showed that coal fly ash and bottom ash contains critical REY in the range of 38% to 41% with Coutlook larger than one. XRD analysis showed that both fly ash and bottom ash have similar mineral phases with slightly different concentrations. The mineral phase is dominated by amorphous glass, quartz, Fe-bearing minerals, and unburned carbon. The amorphous glass phase in fly ash is in the range of 23 to 34% while in bottom ash between 14 and 34%. Unburned carbon content in fly ash and bottom ashes are 7-13% and 7-19%, respectively. Fe-bearing mineral content in fly ash is 15-20% and bottom ash is 13-20%. In addition, Indonesia coal ash has a higher Heavy-REY enrichment factor than Light-REY. The Enrichment Factor of HREY in fly ash is as much as 1.3 times (in average) of the bottom ash.


Materials ◽  
2016 ◽  
Vol 9 (7) ◽  
pp. 580 ◽  
Author(s):  
Martin Kalaw ◽  
Alvin Culaba ◽  
Hirofumi Hinode ◽  
Winarto Kurniawan ◽  
Susan Gallardo ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1933 ◽  
Author(s):  
Esperanza Menéndez ◽  
Cristina Argiz ◽  
Miguel Ángel Sanjuán

Coal bottom ash is normally used as aggregate in mortars and concretes. When it is ground, its characteristics are modified. Therefore, the assessment of its long-term durability must be realized in depth. In this sense, an accelerated chloride ingress test has been performed on reinforced mortars made of Portland cement with different amounts of coal bottom ash (CBA) and/or coal fly ash (CFA). Corrosion potential and corrosion rate were continuously monitored. Cement replacement with bottom and fly ash had beneficial long-term effects regarding chloride penetration resistance. Concerning corrosion performance, by far the most dominant influencing parameter was the ash content. Chloride diffusion coefficient in natural test conditions decreased from 23 × 10−12 m2/s in cements without coal ashes to 4.5 × 10−12 m2/s in cements with 35% by weight of coal ashes. Moreover, the time to steel corrosion initiation went from 102 h to about 500 h, respectively. Therefore, this work presents experimental evidence that confirms the positive effect of both types of coal ashes (CBA and CFA) with regard to the concrete steel corrosion.


Author(s):  
D. R. Sasirekha ◽  
S. Thejaswini

In present condition to full-fill the demand of sustainable construction, concrete made with different materials is the best choice for the construction industry. Generally, we use materials which are required for conventional concrete and addition to those we replace the low-cost materials such as bottom ash in this project we replace the coal bottom ash & quarry dust to the fine aggregate by variable percentages. Coal bottom ash is the by-product of coal combustion. The rock detritus filled in the fishers of coal become separator from the coal during pulverization. In the furnace, carbon, other combustible matter burns, & the non-combustible matter result in coal ash. The coal ash collector from the electro static precipitators is called fly ash. coal bottom ash constitutes about 20% of coal ash and the result is fly ash. The perfect substitute for reverse sand is quarry dust it is the one of the ingredients in manufacture of concrete the crusher dust is known as quarry dust can be used as alternative material to the river sand. quarry dust possesses similar properties as that of river sand, hence accepted as a building material. The aggregate replaced with concrete in various percentages as both BA and QD (10%,20%&30%). All replacements where done to the m30 grade of concrete. the concrete has been replaced by coal bottom ash accordingly to the percentage, and fine aggregate has been replaced by quarry dust in percentage. concrete mixtures where produced, tested & compared in terms of compressive strength, tensile, flexural strength are evaluated. The curing of cubes, cylinders, & beams is 7days 28days & 90days.


2018 ◽  
Vol 206 ◽  
pp. 02013
Author(s):  
Harris Setyo Fernanto ◽  
Djoko Sihono Gabriel

The coal-fired thermal power plant is the main source of coal ash production. Coal ash collected at the bottom of the furnace (boiler) is called coal bottom ash (CBA) and fly ash remaining combustion called coal fly ash (CFA). In Indonesia, the utilization of bottom ash and fly ash generally is still limited to landfill material due to the value of the material too low. The objective of this research is to leverage the value of the utilization of bottom ash and fly ash materials as a mixer of construction industry products. Design of Experiment (DoE) was conducted on paving block product using various experimental factors such as composition of sand, cement, bottom ash, fly ash, and curing period of product. This Design of Experiment (DoE) applied orthogonal array to finding the best mixed compositions that affect the quality of the end result. After it, the proof was performed with a compressive strength test and water absorption test to meet the standard requirements. Testing compressive strength of paving block was done at 7 days, 14 days and 28 days to get the best result.


2016 ◽  
Vol 4 (4) ◽  
pp. 231-242 ◽  
Author(s):  
Surender K. Verma ◽  
Deepankar K. Ashish ◽  
Joginder Singh

Sign in / Sign up

Export Citation Format

Share Document