cement production
Recently Published Documents


TOTAL DOCUMENTS

797
(FIVE YEARS 296)

H-INDEX

43
(FIVE YEARS 8)

Author(s):  
Pranav Andraskar

Abstract: Concrete is the most common used material for construction &their design consumes almost the total cement production in the world. The use of large quantities of cement produces increasing CO2 emission and as a consequence the greenhouse effect. A method to reduce the cement content in the concrete mixes is the use of GGBS, Metakaolin Nano-Silica. This project aims to present the state of GGBS, Metakaolin& Nano-Silica's effect on the workability and mechanical properties of concrete and to find out the economy of the experiment as compared to convential concrete. Concrete has occupied an important place in construction industry in the past few decades and it is used widely in all types of constructions ranging from small buildings to large infrastructural dams or reservoirs.. Keywords: GGBFS, Mechanical Properties, Workability, Economy


Author(s):  
Kazeem O. Bello ◽  
Oluwakemi T. Irekhore ◽  
Onaopepo O. Adeitan ◽  
Azeez O. Yusuf ◽  
Babatunde S. Bada

2022 ◽  
Vol 14 (2) ◽  
pp. 784
Author(s):  
Salvatore Polverino ◽  
Antonio Esau Del Rio Castillo ◽  
Antonio Brencich ◽  
Luigi Marasco ◽  
Francesco Bonaccorso ◽  
...  

Cement is the most-used construction material worldwide. Research for sustainable cement production has focused on including nanomaterials as additives to enhance cement performance (strength and durability) in recent decades. In this concern, graphene is considered one of the most promising additives for cement composites. Here, we propose a novel technique for producing few-layer graphene (FLG) that can fulfil the material demand for the construction industry. We produced specimens with different FLG loadings (from 0.05% to 1% by weight of cement) and curing processes (water and saturated air). The addition of FLG at 0.10% by weight of cement improved the flexural strength by 24% compared to the reference (bare) sample. Similarly, a 0.15% FLG loading by weight of cement led to an improvement in compressive strength of 29% compared to the reference specimen. The FLG flakes produced by our proposed methodology can open the door to their full exploitation in several cement mortar applications, such as cementitious composites with high durability, mechanical performance and high electrical conductivity for electrothermal applications.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 459
Author(s):  
Chiara D’Erme ◽  
Walter Remo Caseri ◽  
Maria Laura Santarelli

The use of nanocellulose in traditional lime-based mortars is a promising solution for green buildings in the frame of limiting the CO2 emissions resulting from Portland Cement production. The influence of the fibrillated cellulose (FC) on lime pastes and lime-based mortars was studied incorporating FC at dosages of 0%, 0.1%, 0.2% and 0.3wt% by weight of binder. The lime pastes were subjected to thermal and nitrogen gas sorption analyses to understand if FC affects the formation of hydraulic compounds and the mesoporosities volume and distribution. The setting and early hydration of the mortars were studied with isothermal calorimetry. The mechanical performances were investigated with compressive and three-point-bending tests. Furthermore, fragments resulting from the mechanical tests were microscopically studied to understand the reinforcement mechanism of the fibres. It was found that 0.3wt% of FC enhances the flexural and compressive strengths respectively by 57% and 44% while the crack propagation after the material failure is not affected.


MAUSAM ◽  
2021 ◽  
Vol 43 (3) ◽  
pp. 311-314
Author(s):  
M.A.El- Shahawi ◽  
A.B. MAYHOUB ◽  
S. M. ETMAN

The concentration of pollutants released from one chimney of the National Company for cement production in Helwan industrial area has been calculated; The calculations are based on the Gaussian plume model covering the period June 1988-May .1989. A method has been presented to calculate the dispersion parameters ay and az in horizontal and vertical directions respectively. The method rely on two-level observation of both wind velocity and temperature. The plume rise correction recommended by Briggs has been adopted to calculate the effective release height (stack height~ plus the plume rise).. The maximum concentration values for different heights and their1otations have been calculated.


Author(s):  
Andrii Kychma ◽  
Yurii Novitskyi ◽  
Rostyslav Predko

The analysis of conditions of long operation of driving mechanisms of technological sites of firing and grinding at cement production is carried out in the work. Typical variants of mutual arrangement of crown pair elements in case of rectilinear axis of rotation of technological unit body and axial beating of gear ring, as well as variant of mutual arrangement of crown gear elements in case of curved axis of rotation of rotary unit body are considered. A technique for determining the total angle of skew of the teeth of the crown pair, taking into account the errors of manufacture and the relative position of the wheels of the open gear. On the basis of experimental data the dependences of the total skew angle of the teeth of the crown pair as a function of the rotation angle of the gear crown are constructed and the possible range of the total skew angle under different operating conditions of the considered large rotating units is determined. To assess the stress-strain state of the elements of the ring gear mounted on the furnace body, a solid model was created in the software environment Solid Works Simulation. As an example, the dependences of the change in the magnitude of the deformation of the teeth of the toothed crown in the plane of action of a uniformly distributed normal force are determined. Practical recommendations for improving the design of the crown gear pair are offered. Keywords: rotary kilns; mills; crown gear; toothed crown; the angle of skew of the teeth; finite element method


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8291
Author(s):  
Mays A. Hamad ◽  
Mohammed Nasr ◽  
Ali Shubbar ◽  
Zainab Al-Khafaji ◽  
Zainab Al Masoodi ◽  
...  

The increase in cement production as a result of growing demand in the construction sector means an increase in energy consumption and CO2 emissions. These emissions are estimated at 7% of the global production of CO2. Ultra-high-performance concrete (UHPC) has excellent mechanical and durability characteristics. Nevertheless, it is costly and affects the environment due to its high amount of cement, which may reach 800–1000 kg/m3. In order to reduce the cement content, silica fume (SF) was utilized as a partial alternative to cement in the production of UHPC. Nevertheless, SF is very expensive. Therefore, the researchers investigated the use of supplementary cementitious materials cheaper than SF. Very limited review investigates addressed the impact of such materials on different properties of UHPC in comparison to that of SF. Thus, this study aims to summarize the effectiveness of using some common supplementary cementitious materials, including fly ashes (FA), ground granulated blast furnace slag (GGBS), metakaolin (MK) and rice husk ashes (RHA) in the manufacturing of UHPC, and comparing the performance of each material with that of SF. The comparison among these substances was also discussed. It has been found that RHA is considered a successful alternative to SF to produce UHPC with similar or even higher properties than SF. Moreover, FA, GGBS and MK can be utilized in combination with SF (as a partial substitute of SF) as a result of having less pozzolanic activity than SF.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7503
Author(s):  
Chang Sun ◽  
Lulu Chen ◽  
Jianzhuang Xiao ◽  
Qiong Liu ◽  
Junqing Zuo

Using recycled powders from solid waste is accepted as an effective strategy to realize the sustainable development of the construction industry. In our study, the cement was substituted by two kinds of recycled powders, i.e., spontaneous combustion gangue powder (SCGP) and recycled concrete powder (RCP), with a certain replacement ratio of 30%. The experimental variables were mainly the type of replacement powder (e.g., SCGP, RCP, and SCGP + RCP) and the grinding time of RCP (e.g., 25 min, 50 min, and 75 min). The fundamental properties, including mechanical properties, long-term properties, and carbon emission, were analyzed for all the mortar mixtures. Experimental results indicate that incorporation of RCP contributes to enhancing the toughness and dry shrinkage resistance of eco-efficient mortar, while SCGP positively affects the compressive strength and chloride resistance. The grinding process improves the activity of RCP to a certain extent, while a long grinding time leads to fusion and aggregation between powders. Investigation on CO2 emission demonstrates that carbon emission from cement production accounts for the largest proportion, 80~95%, in the total emission from mortar production. Combined with the AHP model, eco-efficient mortar containing 15% RCP ground for 50 min and 15% SCGP displays optimal fundamental properties.


2021 ◽  
pp. 100-112
Author(s):  
Lemma Beressa ◽  
Battula Vijaya Saradhi

The use of imported fuel in the Ethiopian cement industry increased the cost of production and the environmental burden, necessitating intervention. The greenhouse gas (GHG) emission, energy usage intensity, and resource exploitation of Ethiopian cement production were evaluated using the life cycle impact assessment (LCA) tool, aiming to recommend improvements. The LCA study used cumulative energy demand (CED) and Intergovernmental Panel on Climate Change (IPCC) 2006 life cycle impact assessment (LCIA) methods. For the case study of Mugher cement factory (MCF), the results on energy use intensities showed 3.74, 3.67, and 2.64 GJ/ton of clinker, Ordinary Portland cement (OPC), Pozzolana Portland cement (PPC), respectively. The result revealed MCF's energy use intensity was within the global range of 3.32 to 5.11 GJ/ton of cement production using similar kiln technology. The results on the GHG emissions were 0.87, 0.84, and 0.59 tons of CO2-equivalent/ton of clinker, OPC, and PPC, respectively. Process emissions accounted for 60% of overall CO2 emissions, with energy-related emissions accounting for the remaining 40%. CO2 emissions of MCF are below the global limit of 0.9 tons/ton of clinker, where all energy sources are fossil fuels. However, it is higher than the 0.65 ton/ton of clinker from a moderate rotary kiln in China. MCF used 70% of its total energy sources from imported fossil fuels, and transportation of the imported fuel added 1.2% CO2 to total emissions. A suggested fossil fuel use improvement scenario for MCF, where coffee husk replaces 50% of the imported coal improved the energy intensity, GHG emissions, and total cost of coal in clinker production by 1.2%, 14%, 36%, respectively.


Sign in / Sign up

Export Citation Format

Share Document