Transferability of elastic–plastic fracture toughness using the Weibull stress approach: significance of parameter calibration

2000 ◽  
Vol 67 (2) ◽  
pp. 101-117 ◽  
Author(s):  
Claudio Ruggieri ◽  
Xaosheng Gao ◽  
Robert H. Dodds Jr.
Author(s):  
Claudio Ruggieri ◽  
Robert H. Dodds

This work describes a micromechanics methodology based upon a local failure criterion incorporating the strong effects of plastic strain on cleavage fracture coupled with statistics of microcracks. A central objective is to gain some understanding on the role of plastic strain on cleavage fracture by means of a probabilistic fracture parameter and how it contributes to the cleavage failure probability. A parameter analysis is conducted to assess the general effects of plastic strain on fracture toughness correlations for conventional SE(B) specimens with varying crack size over specimen width ratios. Another objetive is to evaluate the effectiveness of the modified Weibull stress (σ̃w) model to correct effects of constraint loss in PCVN specimens which serve to determine the indexing temperature, T0, based on the Master Curve methodology. Fracture toughness testing conducted on an A285 Grade C pressure vessel steel provides the cleavage fracture resistance (Jc) data needed to estimate T0. Very detailed non-linear finite element analyses for 3-D models of plane-sided SE(B) and PCVN specimens provide the evolution of near-tip stress field with increased macroscopic load (in terms of the J-integral) to define the relationship between σ̃w and J. For the tested material, the Weibull stress methodology yields estimates for the reference temperature, T0, from small fracture specimens which are in good agreement with the corresponding estimates derived from testing of much larger crack configurations.


1988 ◽  
Vol 74 (5) ◽  
pp. 903-909 ◽  
Author(s):  
Toshiro KOBAYASHI ◽  
Isamu YAMAMOTO ◽  
Masaki KAMIMURA

2021 ◽  
pp. 1-10
Author(s):  
Waseem Ur Rahman ◽  
Rafiullah khan ◽  
Noor Rahman ◽  
Ziyad Awadh Alrowaili ◽  
Baseerat Bibi ◽  
...  

BACKGROUND: Understanding the fracture mechanics of bone is very important in both the medical and bioengineering field. Bone is a hierarchical natural composite material of nanoscale collagen fibers and inorganic material. OBJECTIVE: This study investigates and presents the fracture toughness of bovine cortical bone by using elastic plastic fracture mechanics. METHODS: The J-integral was used as a parameter to calculate the energies utilized in both elastic deformation (Jel) and plastic deformation (Jpl) of the hipbone fracture. Twenty four different types of specimens, i.e. longitudinal compact tension (CT) specimens, transverse CT specimens, and also rectangular unnotched specimens for tension in longitudinal and transverse orientation, were cut from the bovine hip bone of the middle diaphysis. All CT specimens were prepared according to the American Society for Testing and Materials (ASTM) E1820 standard and were tested at room temperature. RESULTS: The results showed that the average total J-integral in transverse CT fracture specimens is 26% greater than that of longitudinal CT fracture specimens. For longitudinal-fractured and transverse-fractured cortical specimens, the energy used in the elastic deformation was found to be 2.8–3 times less than the energy used in the plastic deformation. CONCLUSION: The findings indicate that the overall fracture toughness measured using the J-integral is significantly higher than the toughness calculated by the stress intensity factor. Therefore, J-integral should be employ to compute the fracture toughness of cortical bone.


2012 ◽  
pp. 357-376
Author(s):  
Yasuhito Takashima ◽  
Mitsuru Ohata ◽  
Masaru Seto ◽  
Yoshitomi Okazaki ◽  
Fumiyoshi Minami

Author(s):  
Yoichi Yamashita ◽  
Fumiyoshi Minami

This paper studies the method for estimating the residual stress effects on brittle fracture of structural component based on the Weibull stress criterion. Experiments show that the critical CTOD and the critical load of wide plate with welding residual stress are apparently smaller than those of wide plate without residual stress. It has been found that the critical CTODs of wide plate with and without residual stress can be predicted from the 3PB fracture toughness test results based on the Weibull stress criterion. Constraint loss effects on CTOD of wide plate with residual stress can be assessed by the equivalent CTOD ratio. The equivalent CTOD ratio β is defined as the ratio, β = δ/δWP, where δ and δWP, are CTODs of the standard fracture toughness specimen and wide plate, respectively, at the same level of the Weibull stress. Calculation results of beta are also shown for various residual stress levels and crack lengh based on the Weibull stress criterion. Fracture assessment results using β are shown within the context of CTOD design curve. An excessive conservatism observed in the conventional procedure is reasonably reduced by applying the equivalent CTOD ratio, β.


Sign in / Sign up

Export Citation Format

Share Document