weibull stress
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 2 (4) ◽  
pp. 849-862
Author(s):  
Takuya Akahoshi ◽  
Koji Azuma ◽  
Tsutomu Iwashita ◽  
Toshiomi Itatani

In this study, we propose a method for predicting the occurrence of brittle fractures in the beam-to-column joints of steel structures, considering different crack opening modes. We conducted experiments on beam-to-diaphragm joint specimens with varying plastically constrained cracks to reproduce brittle fractures. The experiments’ results demonstrated the effectiveness of the toughness scale model and the Weibull stress approach. In addition, we propose the mixed-mode ratio, which is a quantitative index of the mode difference, and we applied it to the finite element models of the specimens. In this study, we evaluate the validity of the mixed-mode ratio and explore the differences in crack opening modes, as they pertain to the occurrence of brittle fractures.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6037
Author(s):  
Misato Okada ◽  
Masahiko Maeno ◽  
Yoichiro Nara

Incremental techniques are always required for clinical cases of deep and/or large cavities restored with resin composite materials. The purpose of this study was to examine the bonding states of class 2 direct resin composite restoration applied by various incremental techniques after cyclic loading to simulate the intra-oral environment to define the appropriate technique. Three types of resin composites, namely, bulk-fill (B), flowable (F), and conventional resin composite (C), were applied to standardized class 2 cavities by incremental techniques with single- or bi-resin restoratives. After cyclic loading, the micro-tensile bond strength (μ-TBS) of the dentin cavity floor was measured. The Weibull modulus and Weibull stress values at 10%/90% probability of failure were analyzed. Single-resin incremental restorations with B or F and bi-resin incremental restorations with F + B and F + C demonstrated superior μ-TBS (quantitative ability), bonding reliability, and durability (qualitative ability) compared with the single-resin restoration with C (as control). Furthermore, F + B and F + C restoration yielded an excellent performance compared with the single-resin restorations with B, F, and C. In particular, the F + C restoration, which indicates not only the maximum mean µ-TBS, but also the highest values of the Weibull parameters, may be the optimal restoration method, including the esthetic benefits.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1224
Author(s):  
Maria S. Yankova ◽  
Andrey P. Jivkov ◽  
Rajesh Patel

Ductile-to-brittle-transition refers to observable change in fracture mode with decreasing temperature—from slow ductile crack growth to rapid cleavage. It is exhibited by body-centred cubic metals and presents a challenge for integrity assessment of structural components made of such metals. Local approaches to cleavage fracture, based on Weibull stress as a cleavage crack-driving force, have been shown to predict fracture toughness at very low temperatures. However, they are ineffective in the transition regime without the recalibration of Weibull stress parameters, which requires further testing and thus diminishes their predictive capability. We propose new Weibull stress formulation with thinning function based on obstacle hardening model, which modifies the number of cleavage-initiating features with temperature. Our model is implemented as a post-processor of finite element analysis results. It is applied to analyses of standard compact tension specimens of typical reactor pressure vessel steel, for which deformation and fracture toughness properties in the transition regime are available. It is shown that the new Weibull stress is independent of temperature, and of Weibull shape parameter, within the experimental error. It accurately predicts the fracture toughness at any temperature in the transition regime without relying upon empirical fits for the first time.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5250
Author(s):  
Young Kyun Kim ◽  
Byung Taek Oh ◽  
Jae Hoon Kim

Recently, increasing demand for the accurate assessment of the structural integrity and fitness-for-service (FFS) analysis of engineering structures has elevated constraint effects to one of the most important issues in fracture mechanics and structural integrity research. In this paper, the effect of crack tip constraints are investigated on the fracture toughness assessment of 9% Ni steel for application in liquefied natural gas storage tanks. Crack tip opening displacement (CTOD) tests were conducted using both conventional standard three-point bending (3PB) and wide plate (WP) specimens at a cryogenic temperature of −196 °C. The distribution of the stress and strain fields near the crack tip in the 3PB and WP specimens were then obtained by FE (Finite Elements) analysis. Based on both the experimental and numerical results, the parameters of the Weibull distribution were obtained to evaluate the critical Weibull stress at brittle fracture. The equivalent CTOD ratio β is defined as the ratio of the CTOD of the 3PB specimen to the CTOD of the WP specimen at the same Weibull stress. The application of the proposed CTOD toughness correction method to the WP results was then demonstrated in the context of a failure assessment diagram (FAD). It was determined that the conventional evaluation yields an excessively conservative result for WP specimens, but can be reasonably reduced by applying β.


2020 ◽  
Vol 225 (1) ◽  
pp. 31-45 ◽  
Author(s):  
Yuebing Li ◽  
Linyi Zhu ◽  
Mingjue Zhou ◽  
Yuebao Lei ◽  
Wenhua Wang ◽  
...  

2020 ◽  
Vol 86 (886) ◽  
pp. 19-00438-19-00438
Author(s):  
Kazuma SHIMIZU ◽  
Hiroto SHOJI ◽  
Taichiro KATO ◽  
Hiroyasu TANIGAWA ◽  
Mitsuru OHATA

Sign in / Sign up

Export Citation Format

Share Document