Alosetron does not inhibit cardiac delayed rectifier current IKR

2000 ◽  
Vol 118 (4) ◽  
pp. A1164
Author(s):  
Andreas Carl ◽  
James L. Kenyon ◽  
Kenton M. Sanders
2006 ◽  
Vol 148 (5) ◽  
pp. 724-731 ◽  
Author(s):  
Sergey Missan ◽  
Pavel Zhabyeyev ◽  
Paul Linsdell ◽  
Terence F McDonald

2015 ◽  
Vol 89 ◽  
pp. 335-348 ◽  
Author(s):  
Marianne Agsten ◽  
Sabine Hessler ◽  
Sandra Lehnert ◽  
Tilmann Volk ◽  
Andrea Rittger ◽  
...  

2002 ◽  
Vol 87 (6) ◽  
pp. 2990-2995 ◽  
Author(s):  
Wolfgang Müller ◽  
Katrin Bittner

Oxidative stress is enhanced by [Ca2+]i-dependent stimulation of phospholipases and mitochondria and has been implicated in immune defense, ischemia, and excitotoxicity. Using whole cell recording from hippocampal neurons, we show that arachidonic acid (AA) and hydrogen peroxide (H2O2) both reduce the transient K+ current I A by −54 and −68%, respectively, and shift steady-state inactivation by −10 and −15 mV, respectively. While AA was effective at an extracellular concentration of 1 μM and an intracellular concentration of 1 pM, extracellular H2O2 was equally effective only at a concentration >800 μM (0.0027%). In contrast to AA, H2O2 decreased the slope of activation and increased the slope of inactivation of I A and reduced the sustained delayed rectifier current I K(V) by 22% and shifted its activation by −9 mV. Intracellular application of the antioxidant glutathione (GSH, 2–5 mM) blocked all effects of AA and the reduction of I A by H2O2. In contrast, intracellular GSH enhanced reduction of I K(V) by H2O2. Decrease of the slope of activation and increase of the slope of inactivation of I A by hydrogen peroxide was blocked and reversed to a decrease, respectively, by intracellular application of GSH. Intracellular GSH did not prevent H2O2 to shift inactivation and activation of I A and activation of I K(V) to more negative potentials. We conclude, that AA and H2O2modulate voltage-activated K currents differentially by oxidation of GSH accessible intracellular and GSH inaccessible extracellular K+-channel domains, thereby presumably affecting neuronal information processing and oxidative damage.


2011 ◽  
Vol 301 (1) ◽  
pp. C75-C85 ◽  
Author(s):  
Jennifer L. Smith ◽  
Christie M. McBride ◽  
Parvathi S. Nataraj ◽  
Daniel C. Bartos ◽  
Craig T. January ◽  
...  

The human ether-a-go-go related gene ( hERG) encodes the voltage-gated K+ channel that underlies the rapidly activating delayed-rectifier current in cardiac myocytes. hERG is synthesized in the endoplasmic reticulum (ER) as an “immature” N-linked glycoprotein and is terminally glycosylated in the Golgi apparatus. Most hERG missense mutations linked to long QT syndrome type 2 (LQT2) reduce the terminal glycosylation and functional expression. We tested the hypothesis that a distinct pre-Golgi compartment negatively regulates the trafficking of some LQT2 mutations to the Golgi apparatus. We found that treating cells in nocodazole, a microtubule depolymerizing agent, altered the subcellular localization, functional expression, and glycosylation of the LQT2 mutation G601S-hERG differently from wild-type hERG (WT-hERG). G601S-hERG quickly redistributed to peripheral compartments that partially colocalized with KDEL (Lys-Asp-Glu-Leu) chaperones but not calnexin, Sec31, or the ER golgi intermediate compartment (ERGIC). Treating cells in E-4031, a drug that increases the functional expression of G601S-hERG, prevented the accumulation of G601S-hERG to the peripheral compartments and increased G601S-hERG colocalization with the ERGIC. Coexpressing the temperature-sensitive mutant G protein from vesicular stomatitis virus, a mutant N-linked glycoprotein that is retained in the ER, showed it was not restricted to the same peripheral compartments as G601S-hERG at nonpermissive temperatures. We conclude that the trafficking of G601S-hERG is negatively regulated by a microtubule-dependent compartment within the ER. Identifying mechanisms that prevent the sorting or promote the release of LQT2 channels from this compartment may represent a novel therapeutic strategy for LQT2.


Sign in / Sign up

Export Citation Format

Share Document