Metallothionein protects against alcoholic liver injury in mice through inhmition of oxidative stress

2000 ◽  
Vol 118 (4) ◽  
pp. A924
Author(s):  
Xiuhui Zhong ◽  
Zhanxiang Zhou ◽  
Y. James Kang
Gut ◽  
2016 ◽  
Vol 66 (4) ◽  
pp. 705-715 ◽  
Author(s):  
Man Li ◽  
Yong He ◽  
Zhou Zhou ◽  
Teresa Ramirez ◽  
Yueqiu Gao ◽  
...  

2009 ◽  
Vol 62 (11-12) ◽  
pp. 547-553 ◽  
Author(s):  
Tatjana Radosavljevic ◽  
Dusan Mladenovic ◽  
Danijela Vucevic

Introduction. Oxidative stress plays an important role in pathogenesis of alcoholic liver injury. The main source of free oxygen species is cytochrome P450-dependent monooxygenase, which can be induced by ethanol. Role of cytochrome P4502E1 in ethanol-induced oxidative stress. Reactive oxygen species produced by this enzyme are more important in intracellular oxidative damage compared to species derived from activated phagocytes. Free radicals lead to lipid peroxidation, enzymatic inactivation and protein oxidation. Role of mitochondria in alcohol-induced oxidative stress. Production of mitochondrial reactive oxygen species is increased, and glutathione content is decreased in chronically ethanolfed animals. Oxidative stress in mitochondria leads to mitochondrial DNA damage and has a dual effect on apoptosis. Role of Kupffer cells in alcohol-induced liver injury. Chronic ethanol consumption is associated with increased release of endotoxin from gut lumen into portal circulation. Endotoxin activates Kupffer cells, which then release proinflammatory cytokines and oxidants. Role of neutrophils in alcohol-induced liver injury. Alcoholic liver injury leads to the accumulation of neutrophils, which release reactive oxygen species and lysosomal enzymes and contribute to hepatocyte damage and necrosis. Role of nitric oxide in alcohol-induced oxidative stress. High amounts of nitric oxide contribute to the oxidative damage, mainly by generating peroxynitrites. Role of antioxidants in ethanol-induced oxidative stress. Chronic ethanol consumption is associated with reduced liver glutathione and ?-tocopherol level and with reduced superoxide dismutase, catalase and glutathione peroxidase activity. Conclusion. Oxidative stress in alcoholic liver disease is a consequence of increased production of oxidants and decreased antioxidant defense in the liver.


Life Sciences ◽  
2019 ◽  
Vol 216 ◽  
pp. 305-312 ◽  
Author(s):  
Chuying Zhou ◽  
Yuling Lai ◽  
Peng Huang ◽  
Lingpeng Xie ◽  
Haiyan Lin ◽  
...  

1996 ◽  
Vol 20 (s8) ◽  
pp. 162a-167a ◽  
Author(s):  
Hiromasa Ishii ◽  
Ronald G. Thurman

2020 ◽  
Vol 15 (1) ◽  
pp. 251-258
Author(s):  
Xu Wang ◽  
Ke Dong ◽  
Yujing Ma ◽  
Qizhi Jin ◽  
Shujun Yin ◽  
...  

AbstractLiver injury and disease caused by alcohol is a common complication to human health worldwide. Chamazulene is a natural proazulene with antioxidant and anti-inflammatory properties. This study aims to investigate the hepatoprotective effects of chamazulene against ethanol-induced liver injury in rat models. Adult Wistar rats were orally treated with 50% v/v ethanol (8–12 mL/kg body weight [b.w.]) for 6 weeks to induce alcoholic liver injury. Chamazulene was administered orally to rats 1 h prior to ethanol administration at the doses of 25 and 50 mg/kg b.w. for 6 weeks. Silymarin, a commercial drug for hepatoprotection, was orally administered (50 mg/kg b.w.) for the positive control group. Chamazulene significantly reduced (p < 0.05) the levels of serum alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and malondialdehyde, whereas the levels of antioxidant enzymes (glutathione peroxidase, catalase, and superoxide dismutase) and reduced glutathione were significantly restored (p < 0.05) in contrast to the ethanol model group. The levels of pro-inflammatory cytokines (tumour necrosis factor-α and interleukin-6) were suppressed by chamazulene (p < 0.05) with relevance to ethanol-induced liver injury. Histopathological alterations were convincing in the chamazulene-treated groups, which showed protective effects against alcoholic liver injury. Chamazulene has a significant hepatoprotective effect against ethanol-induced liver injury through alleviation of oxidative stress and prevention of inflammation.


2005 ◽  
Vol 166 (6) ◽  
pp. 1681-1690 ◽  
Author(s):  
Zhanxiang Zhou ◽  
Lipeng Wang ◽  
Zhenyuan Song ◽  
Jack T. Saari ◽  
Craig J. McClain ◽  
...  

2010 ◽  
Vol 59 (8) ◽  
pp. 635-645 ◽  
Author(s):  
Xiongwen Lv ◽  
Zhen Chen ◽  
Jun Li ◽  
Lei Zhang ◽  
Hongfeng Liu ◽  
...  

2016 ◽  
Vol 39 (3) ◽  
pp. 1129-1140 ◽  
Author(s):  
Huifen Wang ◽  
Yanli Zhang ◽  
Ruxue Bai ◽  
Miao Wang ◽  
Shiyu Du

Background/Aims: Lipid accumulation, inflammatory responses and oxidative stress have been implicated in the pathology of alcoholic liver disease (ALD). Targeting inhibition of these features may provide a promising therapeutic strategy for ALD. Baicalin, a flavonoid isolated from Scutellaria baicalensis Georgi, has been shown to exert a hepatoprotective effect. However, its effects on ALD remain obscure. This study was aimed to investigate the effects of baicalin on alcohol-induced liver injury and its related mechanisms. Methods: For in vivo experiments, rats were supplied intragastrical administration of alcohol continuously for 4 or 8 weeks, and then received baicalin treatment in the latter 4 weeks in the presence / absence of alcohol intake. Liver histology and function, inflammatory cytokines, oxidative mediators, and the components of the Sonic hedgehog pathway were evaluated. For in vitro experiments, alcohol-stimulated human normal liver cells LO2 were used. Results: Baicalin treatment significantly alleviated alcoholic liver injury, improved liver function impaired by alcohol, and inhibited hepatocytes apoptosis. In addition, baicalin decreased the expression levels of proinflammatory cytokines TNF-α, IL-1β, IL-6) and malonyldialdehyde (MDA), and increased the activities of antioxidant enzymes SOD and GSH-Px. Furthermore, baicalin modulated the activation of Sonic hedgehog (Shh) pathway. Administration of baicalin upregulated the expression of sonic hedgehog (Shh), patched (Ptc), Smoothened (Smo), and Glioblastoma-1(Gli-1). Blockade of the Shh pathway in cyclopamine abolished the effects of baicalin in vitro. Conclusion: Both in vivo and in vitro experimental results indicate that baicalin exerts hepatoprotective roles in alcohol-induced liver injury through inhibiting oxidative stress, inflammatory response, and the regulation of the Shh pathway.


Sign in / Sign up

Export Citation Format

Share Document