S2067 ICC and Slow Wave Propagation in the Small Intestine of Diabetic Rats

2010 ◽  
Vol 138 (5) ◽  
pp. S-313
Author(s):  
Wim Lammers ◽  
Hanifa M. Al-Bloushi ◽  
Shaikha Al-Eisaei ◽  
Fatima Al-Dhaheri ◽  
Betty Stephen ◽  
...  
2011 ◽  
Vol 96 (10) ◽  
pp. 1039-1048 ◽  
Author(s):  
Wim J. E. P. Lammers ◽  
H. M. Al-Bloushi ◽  
S. A. Al-Eisaei ◽  
F. A. Al-Dhaheri ◽  
B. Stephen ◽  
...  

2005 ◽  
Vol 83 (11) ◽  
pp. 1031-1043 ◽  
Author(s):  
Wim J.E.P Lammers ◽  
Luc Ver Donck ◽  
Jan A.J Schuurkes ◽  
Betty Stephen

In an anesthetized, open-abdomen, canine model, the propagation pattern of the slow wave and its direction, velocity, amplitude, and frequency were investigated in the small intestine of 8 dogs. Electrical recordings were made using a 240-electrode array from 5 different sites, spanning the length of the small intestine. The majority of slow waves propagated uniformly and aborally (84%). In several cases, however, other patterns were found including propagation in the oral direction (11%) and propagation block (2%). In addition, in 69 cases (3%), a slow wave was initiated at a local site beneath the electrode array. Such peripheral pacemakers were found throughout the entire intestine. The frequency, velocity, and amplitude of slow waves were highest in the duodenum and gradually declined along the intestine reaching lowest values in the distal ileum (from 17.4 ± 1.7 c/min to 12.2 ± 0.7 c/min; 10.5 ± 2.4 cm/s to 0.8 ± 0.2 cm/s, and 1.20 ± 0.35 mV to 0.31 ± 0.10 mV, respectively; all p < 0.001). Consequently, the wavelength of the slow wave was strongly reduced from 36.4 ± 0.8 cm to 3.7 ± 0.1 cm (p < 0.001). We conclude that the patterns of slow wave propagation are usually, though not always, uniform in the canine small intestine and that the gradient in the wavelength will influence the patterns of local contractions.Key words: slow waves, conduction velocity, peripheral pacemakers, wavelength.


2012 ◽  
Vol 302 (7) ◽  
pp. G684-G689 ◽  
Author(s):  
Wim J. E. P. Lammers ◽  
B. Stephen ◽  
S. M. Karam

In a few recent studies, the presence of arrhythmias based on reentry and circus movement of the slow wave have been shown to occur in normal and diseased stomachs. To date, however, reentry has not been demonstrated before in any other part of the gastrointestinal system. No animals had to be killed for this study. Use was made of materials obtained during the course of another study in which 11 rats were treated with streptozotocin and housed with age-matched controls. After 3 and 7 mo, segments of duodenum, jejunum, and ileum were isolated and positioned in a tissue bath. Slow wave propagation was recorded with 121 extracellular electrodes. After the experiment, the propagation of the slow waves was reconstructed. In 10 of a total of 66 intestinal segments (15%), a circus movement of the slow wave was detected. These reentries were seen in control ( n = 2) as well as in 3-mo ( n = 2) and 7-mo ( n = 6) diabetic rats. Local conduction velocities and beat-to-beat intervals during the reentries were measured (0.42 ± 0.15 and 3.03 ± 0.67 cm/s, respectively) leading to a wavelength of 1.3 ± 0.5 cm and a circuit diameter of 4.1 ± 1.5 mm. This is the first demonstration of a reentrant arrhythmia in the small intestine of control and diabetic rats. Calculations of the size of the circuits indicate that they are small enough to fit inside the intestinal wall. Extrapolation based on measured velocities and rates indicate that reentrant arrhythmias are also possible in the distal small intestine of larger animals including humans.


2001 ◽  
Vol 281 (3) ◽  
pp. G798-G808 ◽  
Author(s):  
H. Takahara ◽  
M. Fujimura ◽  
S. Taniguchi ◽  
N. Hayashi ◽  
T. Nakamura ◽  
...  

Few previous studies have discussed the changes in serotonin receptor activity in the small intestine of diabetic animals. Therefore, we examined serotonin content in duodenal tissue and dose-dependent effects of serotonin agonists and antagonists on the motor activity of ex vivo vascularly perfused duodenum of streptozotocin (STZ)-diabetic rats. Serotonin content was significantly increased in enterochromaffin cells but not altered in serotonin-containing neurons in STZ-diabetic rats. Motor activity assessed by frequency, amplitude, and percent motility index per 10 min of pressure waves was reduced in the duodenum of diabetic rats, and this reduction was reversed by insulin treatment. Serotonin dose dependently increased the motor activity in control rat duodenum but only a higher concentration of serotonin increased the motor activity in diabetic rats. The 5-hydroxytryptamine (5-HT) receptor subtype 4 (5-HT4) antagonist SB-204070 dose dependently reduced motor activity in both control and diabetic rats, whereas the 5-HT3receptor antagonist azasetron, even at a higher concentration, failed to affect motor activity in diabetic rat duodenum but dose dependently reduced motor activity in control rat duodenum. These results suggest that 5-HT3receptor activity was impaired but 5-HT4receptor activity was intact in STZ-diabetic rat duodenum. Such an impairment of 5-HT3receptor activity may induce the motility disturbance in the small intestine of diabetes mellitus.


2001 ◽  
Vol 280 (6) ◽  
pp. G1370-G1375 ◽  
Author(s):  
Xuemei Lin ◽  
Jiande Z. Chen

The aim of this study was to utilize multichannel electrogastrography to investigate whether patients with functional dyspepsia had impaired propagation or coordination of gastric slow waves in the fasting state compared with healthy controls. The study was performed in 10 patients with functional dyspepsia and 11 healthy subjects. Gastric myoelectrical activity was measured by using surface electrogastrography with a specially designed four-channel device. The study was performed for 30 min or more in the fasting state. Special computer programs were developed for the computation of the propagation and coupling of the gastric slow wave. It was found that, compared with the healthy controls, the patients showed a significantly lower percentage of slow wave propagation (58.0 ± 8.9 vs. 89.9 ± 2.6%, P < 0.002) and a significantly lower percentage of slow wave coupling (46.9 ± 4.4 vs. 61.5 ± 6.9%, P < 0.04). In addition, the patients showed inconsistencies in the frequency and regularity of the gastric slow wave among the four-channel electrogastrograms (EGGs). It was concluded that patients with functional dyspepsia have impaired slow wave propagation and coupling. Multichannel EGG has more information than single-channel EGG for the detection of gastric myoelectrical abnormalities.


Sign in / Sign up

Export Citation Format

Share Document