602 TRANSFER RNA QUEUOSINE MODIFICATION ENZYME MANIPULATES TIGHT JUNCTION PROTEINS IN INFLAMMATORY BOWEL DISEASE

2021 ◽  
Vol 160 (6) ◽  
pp. S-118
Author(s):  
Jilei Zhang ◽  
Yong-Guo Zhang ◽  
KaReisha Robinson ◽  
Yinglin Xia ◽  
Jun Sun
2000 ◽  
Vol 118 (4) ◽  
pp. A795
Author(s):  
Choon Jin Ooi ◽  
Ian M. Rosenberg ◽  
Hans-Christian Reinecker ◽  
Daniel K. Podolsky

2013 ◽  
Vol 304 (11) ◽  
pp. G970-G979 ◽  
Author(s):  
Andreas Fischer ◽  
Markus Gluth ◽  
Ulrich-Frank Pape ◽  
Bertram Wiedenmann ◽  
Franz Theuring ◽  
...  

Intestinal barrier dysfunction is pivotal in the etiology of inflammatory bowel diseases. Combined clinical and endoscopic remission (“mucosal healing”) in patients who received anti-TNF-α therapies suggests restitution of the intestinal barrier, but the mechanisms involved are largely unknown. We therefore investigated the impact of the anti-TNF-α antibody adalimumab on barrier function in two in vitro models. Combined stimulation of Caco-2 and T-84 cells with interferon-γ and TNF-α resulted in a significant decrease of transepithelial electrical resistance (TEER) within 6 h that was prevented by adalimumab in concentrations down to 100 ng/ml. Adalimumab furthermore antagonized the appearance of irregular membrane undulations and prevented internalization of tight junction proteins upon cytokine exposure. In addition, TNF-α induced a downregulation of claudin-1, claudin-2, claudin-4, and occludin as well as activation of phosphatidylinositol 3-kinase signaling in T-84 but not Caco-2 cells, which was reversed by adalimumab. At the signaling level, adalimumab prevented increased phosphorylation of myosin light chain as well as activation of p38 MAPK and NF-κB accompanying the decline in TEER in both model systems. Pharmacological inhibition of NF-κB signaling partially prevented the TNF-α-induced TEER loss, whereas inhibition of p38 worsened barrier dysfunction in Caco-2 but not T-84 cells. Taken together, these data demonstrate that adalimumab prevents barrier dysfunction induced by TNF-α both functionally and structurally as well as at the level of signal transduction. Barrier protection might therefore constitute a novel mechanism how anti-TNF-α therapy contributes to epithelial restitution and tissue repair in inflammatory bowel diseases.


2019 ◽  
Vol 10 (2) ◽  
pp. 1235-1242 ◽  
Author(s):  
Caimei He ◽  
Jun Deng ◽  
Xin Hu ◽  
Sichun Zhou ◽  
Jingtao Wu ◽  
...  

Inflammation caused by either intrinsic or extrinsic toxins results in intestinal barrier dysfunction, contributing to inflammatory bowel disease (IBD) and other diseases.


Sign in / Sign up

Export Citation Format

Share Document