The effects of vegetation and burning on the chemical composition of soil organic matter of a volcanic ash soil as shown by 13C NMR spectroscopy. II. Density fractions

Geoderma ◽  
1997 ◽  
Vol 76 (3-4) ◽  
pp. 175-192 ◽  
Author(s):  
A. Golchin ◽  
J.A. Baldock ◽  
P. Clarke ◽  
T. Higashi ◽  
J.M. Oades
Soil Research ◽  
1999 ◽  
Vol 37 (1) ◽  
pp. 123 ◽  
Author(s):  
D. F. Guinto ◽  
Z. H. Xu ◽  
P. G. Saffigna ◽  
A. P. N. House ◽  
M. C. S. Perera

The effects of burning on in situ extractable nitrogen (NH+4-N+NO-3-N) and net Nmineralisation following scheduled fuel reduction burns in repeatedly burnt dry and wet sclerophyll forest sites in south-east Queensland were assessed. In addition, soil organic matter composition in the wet sclerophyll site was assessed by 13C NMR spectroscopy. The results showed that at the dry sclerophyll site, extractable N and net N mineralisation for 1 year were largely unaffected by burning, while at the wet sclerophyll site, these parameters decreased. 13C NMR analysis of soil samples from the wet sclerophyll site revealed that there was a significant reduction in the proportion of O-alkyl (alkoxy/carbohydrate) C with increasing burning frequency. Statistically significant effects on the other chemical shift regions were not detected. The ratio of alkyl C to O-alkyl C, a proposed index of organic matter decomposition, increased with increasing burning frequency. A high ratio of alkyl C to O-alkyl C suggests low amounts of carbohydrates relative to waxes and cutins, which could in turn lead to slower mineralisation. The findings are in accord with this hypothesis. There were significant linear relationships between cumulative N mineralisation for 1 year and the proportions of alkyl C and O-alkyl C, and the ratio of alkyl C/O-alkyl C. Thus, in addition to reductions in substrate quantity (low organic C and total N for burnt soils), there was also an alteration of substrate quality as revealed by 13C NMR spectroscopy which is reflected in low N mineralisation.


2021 ◽  
Author(s):  
Karin Kauer ◽  
Sandra Pärnpuu

<p>The aim of this research was to study the effect of different plants on soil organic matter (SOM) composition. The composition of SOM was studied in a field experiment established in 1964 on a carbonaceous glacial till soil with very low initial SOC concentration (1.28 g kg<sup>-1</sup>). The effects on SOM composition of bare fallow, barley, grasses, and clover-grasses mixture, were studied using 13C nuclear magnetic resonance (NMR) spectroscopy which is a common tool to characterize SOM. In 2014 the soil samples were collected from 0-5 cm soil layer, air-dried samples sieved through a 2-mm sieve and pretreated with 10% HF solution before NMR spectroscopy analysis. Samples of bulk soil and density fractionated mineral fraction (John et al., 2005) were analyzed. Also, a sample from barley treatment collected in 1966 was analyzed.</p><p>O/N-alkyl C was the most abundant C type at the start of the experiment and also in all treatments after 50 years. During 50 years the proportions of O/N-alkyl C and alkyl C increased but contributions of carboxyl C and aromatic C decreased. The ratio of alkyl C/O-alkyl C, which describes the degree of soil organic matter decomposition, decreased from 0.47 (in 1966) to 0.40-0.44 in treatments with plants. In bare fallow treatment, the SOM decomposition stage did not change a lot during the time. In soil mineral fraction the differences between treatments appeared more clearly and the degree of decomposition decreased in line: bare fallow>barley>clover-grasses>grasses (0.49>0.40>0.36>0.34) and this was due to higher O/N-alkyl-C content in treatments with plants. The higher O/N-alkyl C contribution in soil heavy fraction can be attributed to microbially synthesized carbohydrates (Yeasmin et al., 2020) and depended on the amount and properties of C input into the soil in different treatments.</p><p>In conclusion, the SOM composition was influenced by plant composition and the effect was more pronounced in soil mineral fraction. The SOM degree of decomposition was higher in treatment with annual crop (barley during 50 years). Under perennial grasses and clover-grasses mixture, the soil organic matter decomposition degree was lower.</p><p>This work was supported by the Estonian Research Council grant PSG147.</p><p>References</p><p>John, B., Yamashita, T., Ludwig, B., & Flessa, H. (2005). Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma, 128(1–2), 63–79. https://doi.org/10.1016/j.geoderma.2004.12.013</p><p>Yeasmin, S., Singh, B., Smernik, R. J., & Johnston, C. T. (2020). Effect of land use on organic matter composition in density fractions of contrasting soils: A comparative study using 13C NMR and DRIFT spectroscopy. Science of the Total Environment, 726, 138395. https://doi.org/10.1016/j.scitotenv.2020.138395</p>


Sign in / Sign up

Export Citation Format

Share Document