soil material
Recently Published Documents


TOTAL DOCUMENTS

342
(FIVE YEARS 80)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
Vol 12 (2) ◽  
pp. 595
Author(s):  
Collin J. Weber ◽  
Jens Hahn ◽  
Christian Opp

Soils contain an increasing number of different pollutants, which are often released into the environment by human activity. Among the “new” potential pollutants are plastics and microplastics. “Recognized” pollutants such as heavy metals, of geogenic and anthropogenic origin, now meet purely anthropogenic contaminants such as plastic particles. Those can meet especially in floodplain landscapes and floodplain soils, because of their function as a temporary sink for sediments, nutrients, and pollutants. Based on a geospatial sampling approach, we analyzed the soil properties and heavy metal contents (ICP-MS) in soil material and macroplastic particles, and calculated total plastic concentrations (Ptot) from preliminary studies. Those data were used to investigate spatial connections between both groups of pollutants. Our results from the example of the Lahn river catchment show a low-to-moderate contamination of the floodplain soils with heavy metals and a wide distribution of plastic contents up to a depth of two meters. Furthermore, we were able to document heavy metal contents in macroplastic particles. Spatial and statistical correlations between both pollutants were found. Those correlations are mainly expressed by a comparable variability in concentrations across the catchment and in a common accumulation in topsoil and upper soil or sediment layers (0–50 cm). The results indicate comparable deposition conditions of both pollutants in the floodplain system.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262203
Author(s):  
Michał Beczek ◽  
Magdalena Ryżak ◽  
Rafał Mazur ◽  
Agata Sochan ◽  
Cezary Polakowski ◽  
...  

Soil splash is the first step in the process of water erosion, where impacting raindrops cause the detachment and transport of soil material. One of the factors that strongly influences the magnitude of soil splash is the incline of the surface (slope). The aim of this study was to investigate the effect of the slope on the course of the splash phenomenon caused by single-drop impact (one drop impact per soil sample), with respect to the mass and proportions of the ejected material, taking into account its division into solid and liquid phases i.e. soil and water. The investigation was carried out using three types of soil with different textures, in moistened (pressure head corresponding to -1.0 kPa) and air-dry (-1500 kPa) conditions. The soil samples were on three angles of slope, being 5°, 15°, and 30°, respectively. After a single-drop impact with a diameter of 4.2 mm, the ejected material was collected using a splash cup. The following quantities of splashed material were measured: the total mass, the mass of the solid phase, and the mass of the liquid phase. Additionally, the distribution and proportions (soil/water) of the splashed material were analysed in both the upslope and downslope directions. It was found that: (i) the change of slope had a variable influence on the measured quantities for different soils; (ii) in the case of moistened samples, the measured values were mainly influenced by the texture, while in the dry samples, by the angle of the slope; (iii) with the increase of slope, the splashed material was mostly ejected in the downslope direction (irrespective of moisture conditions); (iv) in the moistened samples, the ejected material consisted mostly of water, while in the dry samples it was soil—this occurred for material ejected both upslope and downslope. The obtained results are important for improving the physical description of the process of splash erosion. A more thorough understanding and better recognition of the mechanisms governing this phenomenon at all stages could contribute to the development of more effective methods for protecting soil against erosion.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Esra Güneri ◽  
Yeliz Yukselen-Aksoy
Keyword(s):  

2021 ◽  
Vol 14 (4) ◽  
pp. 651-680
Author(s):  
Ammar Alnmr

Choosing and calibrating a robust and accurate soil material model (constitutive model) is the first important step in geotechnical numerical modelling. A less accurate model leads to poor results and more difficulty estimating true behaviour in the field. Subsequent design work is compromised and may lead to dangerous and costly mistakes. In this research, laboratory experimental results were used as a basis to evaluate several soil material models offered in Plaxis2D software. The deciding feature of the soil model was how well it could represent effects of percentage of fine material within sandy soils to simulate its behaviour. Results indicate that the Hardening Soil (HS) model works well when the percentage of fine (soft) materials is less than 10%. Above that level, the Soft Soil model (SS) becomes the most suitable.  Finally, some important conclusions about this research and recommendations for future research are highlighted.


2021 ◽  
Vol 906 (1) ◽  
pp. 012045
Author(s):  
Omid Khalaj ◽  
Reza Zakeri ◽  
Seyed Naser Moghaddas Tafreshi ◽  
Bohuslav Mašek ◽  
Ctibor štadler

Abstract Nowadays the waste rubber problems are concerned due to the environmental issues, storage, and recycling difficulty. However, the rubber base equipment has been widely used to protect structures for vibrations - that has been generated by the structure or induced from the vicinity area or the bedrock into the structure - due to the notable capability of absorbing energy. In this study, the repeated-loading behaviour of the Sand Rubber Mixture (SRM) has been investigated and the remarkable energy absorption properties of the mixture have been illustrated. The test soil material that has been used in this study was a well-graded sand (SW) with a mean grain size of 2 mm. The test martial rubber that has been used was grain particles with a uniform size of 4.76 mm. The sand rubber mixture (SRM) was prepared by using 7.5% rubber inclusion because it was found as the optimum rubber content. A series of force control repeated-loading CBR tests have been arranged. The effect of mixing rubber particles with the well-graded sand (SW test material) has been investigated. This shows the remarkable energy absorption capability of Sand Rubber Mixture (SRM) to protect the bed of a machine’s footing that is generating repeated loads. The SRM usage could be extended to be employed as a part of an energy absorption unit and dampers facilities beneath a machine footing or structures that are sensitive to the vibration to prevent destructive deformation and resonance phenomenon.


2021 ◽  
Vol 40 (4) ◽  
pp. 558-563
Author(s):  
E.C. Amanamba ◽  
C. Chioke ◽  
A.C. Ekeleme

This study examined the causes of flexible pavement failure, taking the Enugu/Port-Harcourt expressway as a case study; to understand possible peculiarities. Chainages 101+400 and 125+925 were the most critical, having potholes of 500mm in depth; hence, soil samples were taken from these spots. The following tests were conducted: Particle size distribution, Atterberg limits, Permeability, Compaction, and California Bearing Ratio (CBR). The results obtained showed evidence of presence of clay in the subgrade; hence, concluding that the failure was mainly caused by poor soil material. From visual condition survey, it was noted that there were no drainages even at the critical paths of the alignment, and there was a significant proportion of Heavy Goods Vehicles (HGVs) which may not have been adequately considered during design.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jun Yang ◽  
Yi Song ◽  
Rui Fu ◽  
Changwei Lu ◽  
Hongcheng Liu

In this study, physical experiments, clay mineral determination, and pH testing were performed to examine the basic properties of soil samples from a soil material yard selected for dam construction at Hua’ao Lake, Qian’an County, Jilin Province, China. The results show that the soil in the study area is cohesive, the mineral content of illite in the illite/montmorillonite mixed layer is approximately 50%, and the pH value of the environment from which the soil samples were taken is 8.43-8.91. These factors enable the soil in this area to be dispersed. The dispersibility of the soil sampled from this area was evaluated by a double hydrometer test, a pinhole test, a fragmentation test, a sodium adsorption ratio test, and determination of the percentage of exchangeable sodium ions. Because these test methods had inconsistent results, the test methods in combination with the typical geomorphic conditions of the sampling points were ultimately used to comprehensively evaluate the soil dispersion. The results demonstrate that the cohesive soil sampled from the soil material yard is dispersible and must be treated with improvement measures before it can be used as a filling material for the dam. To improve the dispersive and transitional soil, 2%, 3%, 4%, 5%, and 6% L1Fa2 (a 1 : 2 ratio of lime and fly ash) and C1L1Fa4 (a 1 : 1 : 4 ratio of cement, lime, and fly ash) were used to perform improvement tests on 10 groups of dispersive soil samples and 10 groups of transitional soil samples. The results reveal that the addition of 4% L1Fa2 best improves the dispersive soil in this area. Therefore, the soil intended for this project should be used as a dam-building material after improvement with the 4% addition of L1Fa2.


Sign in / Sign up

Export Citation Format

Share Document