A closed form solution for temperature rise inside solid substrate due to time exponentially varying pulse

2002 ◽  
Vol 45 (9) ◽  
pp. 1993-2000 ◽  
Author(s):  
B.S. Yilbas
Author(s):  
M Kalyon ◽  
B S Yilbas

Laser heating offers considerable advantages over conventional methods. The closed-form solution for the temperature rise in the substrate during the laser heating process gives insight into the physical phenomena involving during the heating process and the material response to a laser heating pulse. In the present study, the exact solution for the temperature rise due to a time exponentially varying pulse and convective boundary condition at the surface is obtained. The closed-form solution to the solutions available in the literature for a step input intensity pulse with a convective boundary condition at the surface as well as a time exponentially varying pulse with a non-convective boundary condition at the surface is deduced. A Laplace transformation method is used in the analysis. In order to account for a pulse resembling a typical laser pulse, an intensity function resulting in exponentially increasing and decaying intensity distribution is employed in the source term in the governing transport equation. The effects of the pulse parameters β′, β′/γ′ and Biot number Bi on the resulting temperature profiles are presented and the material response to a pulse profile resembling a typical actual laser pulse is discussed. It is found that the closed-form solution obtained in the present study becomes identical with those presented in the previous studies for different pulse and boundary conditions. Moreover, the coupling effect of pulse parameter β and Bi is significant for the temperature rise at the surface.


Author(s):  
B S Yilbas ◽  
M Kalyon

Modelling of the laser heating process is fruitful, since it enhances the understanding of the physical processes involved and minimizes the experimental cost. In the present study, an analytical solution for the temperature distribution inside the solid substrate is obtained using a Laplace transform method. A time exponentially decaying laser pulse profile is introduced in the analysis. The phase change process and recession velocity are accommodated to account for the evaporation at the surface. The closed-form solution obtained is compared with the analytical solution obtained previously for a conduction limited heating case. It is found that the closed-form solution obtained from the present study reduces to a previously obtained analytical solution when the pulse parameter, β∗, is set to zero in the closed-form solution. Temperature predictions from simulations agree well with the results obtained from the closed-form solution.


2013 ◽  
Vol 40 (2) ◽  
pp. 106-114
Author(s):  
J. Venetis ◽  
Aimilios (Preferred name Emilios) Sideridis

2021 ◽  
Vol 10 (7) ◽  
pp. 435
Author(s):  
Yongbo Wang ◽  
Nanshan Zheng ◽  
Zhengfu Bian

Since pairwise registration is a necessary step for the seamless fusion of point clouds from neighboring stations, a closed-form solution to planar feature-based registration of LiDAR (Light Detection and Ranging) point clouds is proposed in this paper. Based on the Plücker coordinate-based representation of linear features in three-dimensional space, a quad tuple-based representation of planar features is introduced, which makes it possible to directly determine the difference between any two planar features. Dual quaternions are employed to represent spatial transformation and operations between dual quaternions and the quad tuple-based representation of planar features are given, with which an error norm is constructed. Based on L2-norm-minimization, detailed derivations of the proposed solution are explained step by step. Two experiments were designed in which simulated data and real data were both used to verify the correctness and the feasibility of the proposed solution. With the simulated data, the calculated registration results were consistent with the pre-established parameters, which verifies the correctness of the presented solution. With the real data, the calculated registration results were consistent with the results calculated by iterative methods. Conclusions can be drawn from the two experiments: (1) The proposed solution does not require any initial estimates of the unknown parameters in advance, which assures the stability and robustness of the solution; (2) Using dual quaternions to represent spatial transformation greatly reduces the additional constraints in the estimation process.


Author(s):  
Puneet Pasricha ◽  
Anubha Goel

This article derives a closed-form pricing formula for the European exchange option in a stochastic volatility framework. Firstly, with the Feynman–Kac theorem's application, we obtain a relation between the price of the European exchange option and a European vanilla call option with unit strike price under a doubly stochastic volatility model. Then, we obtain the closed-form solution for the vanilla option using the characteristic function. A key distinguishing feature of the proposed simplified approach is that it does not require a change of numeraire in contrast with the usual methods to price exchange options. Finally, through numerical experiments, the accuracy of the newly derived formula is verified by comparing with the results obtained using Monte Carlo simulations.


Sign in / Sign up

Export Citation Format

Share Document