scholarly journals Role of nitric oxide in the response of renal sympathetic nerve activity to hemorrhage in conscious rats

1996 ◽  
Vol 71 ◽  
pp. 327
Author(s):  
Yoshihide Fujisawa ◽  
Akira Miyatake ◽  
Youichi Abe
1999 ◽  
Vol 277 (1) ◽  
pp. H8-H14 ◽  
Author(s):  
Yoshihide Fujisawa ◽  
Naoko Mori ◽  
Kouichi Yube ◽  
Hiroshi Miyanaka ◽  
Akira Miyatake ◽  
...  

The effect of inhibition of nitric oxide (NO) synthesis on the responses of blood pressure (BP), heart rate (HR), and renal sympathetic nerve activity (RSNA) during hemorrhaging was examined with the use of an NO synthase inhibitor, NG-nitro-l-arginine methyl ester (l-NAME), in conscious rats. In the 0.9% saline group, hemorrhage (10 ml/kg body wt) did not alter BP but significantly increased HR and RSNA by 88 ± 12 beats/min and 67 ± 12%, respectively. Intravenous infusion of l-NAME (50 μg ⋅ kg−1⋅ min−1) significantly attenuated these tachycardic and sympathoexcitatory responses to hemorrhage (14 ± 7 beats/min and 26 ± 12%, respectively). Pretreatment ofl-arginine (87 mg/kg) recovered the attenuation of HR and RSNA responses induced byl-NAME (92 ± 6 beats/min and 64 ± 10%, respectively).l-NAME by itself did not alter the baroreceptor reflex control of HR and RSNA. Hemorrhage increased the plasma vasopressin concentration, and its increment in thel-NAME-treated group was significantly higher than that in the 0.9% saline group. Pretreatment with the vascular arginine vasopressin V1-receptor antagonist OPC-21268 (5 mg/kg) recovered the attenuation of RSNA response induced byl-NAME (54 ± 7%). These results indicate that NO modulated HR and RSNA responses to hemorrhage but did not directly affect the baroreceptor reflex arch. It can be assumed that NO modulated the baroreflex function by altering the secretion of vasopressin induced by hemorrhage.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Maycon Igor de Oliveira Milanez ◽  
Erika Emy Nishi ◽  
Antônio Augusto Rocha ◽  
Cássia Toledo Bergamaschi ◽  
Ruy Ribeiro Campos

2008 ◽  
Vol 295 (1) ◽  
pp. R8-R14 ◽  
Author(s):  
Roy Kanbar ◽  
Bruno Chapuis ◽  
Valérie Oréa ◽  
Christian Barrès ◽  
Claude Julien

This study compared the baroreflex control of lumbar and renal sympathetic nerve activity (SNA) in conscious rats. Arterial pressure (AP) and lumbar and renal SNA were simultaneously recorded in six freely behaving rats. Pharmacological estimates of lumbar and renal sympathetic baroreflex sensitivity (BRS) were obtained by means of the sequential intravenous administration of sodium nitroprusside and phenylephrine. Sympathetic BRS was significantly ( P < 0.05) lower for lumbar [3.0 ± 0.4 normalized units (NU)/mmHg] than for renal (7.6 ± 0.6 NU/mmHg) SNA. During a 219-min baseline period, spontaneous lumbar and renal BRS were continuously assessed by computing the gain of the transfer function relating AP and SNA at heart rate frequency over consecutive 61.4-s periods. The transfer gain was considered only when coherence between AP and SNA significantly differed from zero, which was verified in 99 ± 1 and 96 ± 3% of cases for lumbar and renal SNA, respectively. When averaged over the entire baseline period, spontaneous BRS was significantly ( P < 0.05) lower for lumbar (1.3 ± 0.2 NU/mmHg) than for renal (2.3 ± 0.3 NU/mmHg) SNA. For both SNAs, spontaneous BRS showed marked fluctuations (variation coefficients were 26 ± 2 and 28 ± 2% for lumbar and renal SNA, respectively). These fluctuations were positively correlated in five of six rats ( R = 0.44 ± 0.06; n = 204 ± 8; P < 0.0001). We conclude that in conscious rats, the baroreflex control of lumbar and renal SNA shows quantitative differences but is modulated in a mostly coordinated way.


Sign in / Sign up

Export Citation Format

Share Document