gabaergic receptors
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
João Ronielly Campêlo Araújo ◽  
Adriana Rolim Campos ◽  
Maria Kueirislene Amâncio Ferreira ◽  
Sacha Aubrey Alves Rodrigues Santos ◽  
Marina de Barros Mamede Vidal Damasceno ◽  
...  

Background: Plant lectins has shown promising neuropharmacological activities in animal models. Objective: This study evaluated the effect of Dioclea altissima seed lectin (DAL) on adult zebrafish behavior. Method: Zebrafish (n=6/group) were treated (i.p.; 20 µL) with DAL (0.025; 0.05 or 0.1 mg/mL), vehicle or diazepam (DZP) and submitted to several tests (open field, light/dark preference or novel tank). Flumazenil, pizotifen or granisetron were administered 15 min before DAL (0.05 mg/mL), and the animals were evaluated on light/dark preference test. It was also verified whether the DAL effect depended on its structural integrity and ability to interact with carbohydrates. Results: DAL decreased the locomotor activity of adult zebrafish (0.025; 0.05 or 0.1 mg/mL), increased the time spent in the upper region of the aquarium (0.025 mg/mL), and decreased the latency time of adult zebrafish to enter the upper region on the novel tank test. DAL (0.05 mg/mL) also increased their permanence in the light zone of the light/dark preference test. The effect of DAL was dependent on carbohydrate interaction and protein structure integrity and was prevented by pizotifen, granizetron and flumazenil. Conclusion: DAL was found to have an anxiolytic-like effect mediated by the 5-HT and GABAergic receptors.


2020 ◽  
Vol 14 (1) ◽  
pp. 36-51 ◽  
Author(s):  
George L. da Silva Oliveira ◽  
José C. Correia L. da Silva ◽  
Ana P. dos Santos C. L da Silva ◽  
Chistiane M. Feitosa ◽  
Fernanda R. de Castro Almeida

Background: Central nervous system disorders such as anxiety, depression and epilepsy are characterized by sharing several molecular mechanisms in common and the involvement of the L-arginine/NO pathway in neurobehavioral studies with β-caryophyllene is still little discussed. Objectives: One of the objectives of the present study was to demonstrate the anxiolytic behavioral effect of β-caryophyllene (β-CBP) in female Swiss mice, as well as to investigate the molecular mechanisms underlying the results obtained. Methods: This study evaluated the neurobehavioral effects of β-CBP using the open field test, rota-rod test, elevated plus maze test, novelty suppressed feeding test, tail suspension test and forced swim test, as well as pilocarpine, pentylenetetrazole and isoniazid-induced epileptic seizure models. Results:: The results demonstrated that the neuropharmacological activities of β-CBP may involve benzodiazepine/GABAergic receptors, since the pre-treatment of β-CBP (200 mg/kg) associated with flumazenil (5 mg/kg, benzodiazepine receptor antagonist) and bicuculline (1 mg/kg, selective GABAA receptor antagonist) reestablished the anxiety parameters in the elevated plus-maze test, as well as the results of reduced latency to consume food in the novelty suppressed feeding test. In addition to benzodiazepine/GABAergic receptors, the neuropharmacological properties of β-CBP may be related to inhibition of nitric oxide synthesis, since pre-treatment with L-arginine (500- 750 mg/kg) reversed significantly the anxiolytic, antidepressant and anticonvulsant activities of β-CBP. Conclusion: The results obtained provide additional support in understanding the neuromolecular mechanisms underlying the anxiolytic, antidepressant and anticonvulsive properties of β-CBP in female Swiss mice.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Viviam Sanabria ◽  
Simone Bittencourt ◽  
Sandra R. Perosa ◽  
Tomás de la Rosa ◽  
Maria da Graça Naffah-Mazzacoratti ◽  
...  

AbstractThe Amazon rodent Proechimys guyannensis is widely studied for hosting various pathogens, though rarely getting sick. Previous studies on male Proechimys have revealed an endogenous resistance to epilepsy. Here, we assess in female Proechimys, whether sex hormones and biochemical aspects can interfere with the induction of status epilepticus (SE). The lithium-pilocarpine ramp-up protocol was used to induce SE, and blood sera were collected at 30 and 90 min after SE, alongside brains, for biochemical, western blot and immunohistochemical analyses. Results from non-ovariectomised (NOVX) Proechimys were compared to ovariectomised (OVX) animals. Data from female Wistars were used as a positive control of SE inductions. SE latency was similar in NOVX, OVX, and female Wistars groups. However, the pilocarpine dose required to induce SE in Proechimys was higher (25- to 50-folds more). Despite a higher dose, Proechimys did not show strong SE like Wistars; they only reached stage 2 of the Racine scale. These data suggest that female Proechimys are resistant to SE induction. Glucose and progesterone levels increased at 30 min and returned to normal at 90 min after SE. A relevant fact because in humans and rodents, SE leads to hypoglycaemia after 30 min of SE and does not return to normal levels in a short time, a typical adverse effect of SE. In OVX animals, a decrease in GABAergic receptors within 90 min of SE may suggest that ovariectomy produces changes in the hippocampus, including a certain vulnerability to seizures. We speculate that progesterone and glucose increases form part of the compensatory mechanisms that provide resistance in Proechimys against SE induction.


2020 ◽  
Vol 26 (31) ◽  
pp. 3895-3904
Author(s):  
João R.C. Araújo ◽  
Adriana R. Campos ◽  
Marina de Barros M.V. Damasceno ◽  
Sacha A.A.R. Santos ◽  
Maria K.A. Ferreira ◽  
...  

Background: Plant lectins have shown promising biological activities in the central nervous system (CNS). Objective: This study evaluated the effect of DAL, a lectin isolated from the seeds of the Dioclea altissima species, having binding affinity to D-glucose or D-mannose residues, on mice behavior. Methods: Mice (n=6/group) were treated (i.p.) with DAL (0.25, 0.5 or 1 mg/kg) or vehicle and subjected to several tests (open field/OFT, marble-burying/MBT, hole-board/HBT, elevated plus maze/PMT, tail suspension/ TST, forced swimming/FST or rotarod/RRT). Pizotifen, cyproheptadine, flumazenil, L-NAME, 7-NI, Larginine or yohimbine were administered 15 min before DAL (0.5 mg/kg) and the animals were evaluated on PMT. It was also verified whether the DAL effect depended on its structural integrity and ability to interact with carbohydrates. Results: The results showed there were no neurobehavioral changes in the mice at the RRT, FST and locomotion in the OFT. DAL (0.25, 0.5 or 1 mg/kg) increased the behavior of grooming and rearing in the OFT, head dips in the HBT, pedalling in the TST and decreased the number of marbles hidden in the MBT. In the PMT, DAL (0.25, 0.5 and 1 mg/kg) and Diazepam increased the frequency of entries in the open arms and the time of permanence in the open arms without affecting the locomotor activity. The effect of DAL was dependent on carbohydrate interaction and protein structure integrity and it prevented by pizotifen, cyproheptadine, flumazenil, L-NAME and 7-NI, but not by L-arginine or yohimbine. Conclusion: DAL was found to have an anxiolytic-like effect mediated by the 5-HT and GABAergic receptors and NO pathway.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Maycon Igor de Oliveira Milanez ◽  
Erika Emy Nishi ◽  
Antônio Augusto Rocha ◽  
Cássia Toledo Bergamaschi ◽  
Ruy Ribeiro Campos

2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Justin L. Balsor ◽  
David G. Jones ◽  
Kathryn M. Murphy

Monocular deprivation (MD) during the critical period (CP) has enduring effects on visual acuity and the functioning of the visual cortex (V1). This experience-dependent plasticity has become a model for studying the mechanisms, especially glutamatergic and GABAergic receptors, that regulate amblyopia. Less is known, however, about treatment-induced changes to those receptors and if those changes differentiate treatments that support the recovery of acuity versus persistent acuity deficits. Here, we use an animal model to explore the effects of 3 visual treatments started during the CP (n=24, 10 male and 14 female): binocular vision (BV) that promotes good acuity versus reverse occlusion (RO) and binocular deprivation (BD) that causes persistent acuity deficits. We measured the recovery of a collection of glutamatergic and GABAergic receptor subunits in the V1 and modeled recovery of kinetics for NMDAR and GABAAR. There was a complex pattern of protein changes that prompted us to develop an unbiased data-driven approach for these high-dimensional data analyses to identify plasticity features and construct plasticity phenotypes. Cluster analysis of the plasticity phenotypes suggests that BV supports adaptive plasticity while RO and BD promote a maladaptive pattern. The RO plasticity phenotype appeared more similar to adults with a high expression of GluA2, and the BD phenotypes were dominated by GABAAα1, highlighting that multiple plasticity phenotypes can underlie persistent poor acuity. After 2-4 days of BV, the plasticity phenotypes resembled normals, but only one feature, the GluN2A:GluA2 balance, returned to normal levels. Perhaps, balancing Hebbian (GluN2A) and homeostatic (GluA2) mechanisms is necessary for the recovery of vision.


2019 ◽  
Author(s):  
Justin L. Balsor ◽  
David G. Jones ◽  
Kathryn M. Murphy

AbstractMonocular deprivation (MD) during the critical period (CP) has enduring effects on visual acuity and the functioning of the visual cortex (V1). This experience-dependent plasticity has become a model for studying the mechanisms, especially glutamatergic and GABAergic receptors, that regulate amblyopia. Less is known, however, about treatment-induced changes to those receptors and if those changes differentiate treatments that support the recovery of acuity versus persistent acuity deficits. Here we use an animal model to explore the effects of 3 visual treatments started during the CP (n=24, 10 male and 14 female); binocular vision (BV) that promotes good acuity versus reverse occlusion (RO) and binocular deprivation (BD) that causes persistent acuity deficits. We measured recovery of a collection of glutamatergic and GABAergic receptor subunits in V1 and modeled recovery of kinetics for NMDAR and GABAAR. There was a complex pattern of protein changes that prompted us to develop an unbiased data-driven approach for these high-dimensional data analyses to identify plasticity features and construct plasticity phenotypes. Cluster analysis of the plasticity phenotypes suggests that BV supports adaptive plasticity while RO and BD promote a maladaptive pattern. The RO plasticity phenotype appeared more similar to adults with high expression of GluA2 and the BD phenotypes were dominated by GABAAα1, highlighting that multiple plasticity phenotypes can underlie persistent poor acuity. After 2-4 days of BV the plasticity phenotypes resembled normals, but only one feature, the GluN2A:GluA2 balance, returned to normal levels. Perhaps, balancing Hebbian (GluN2A) and homeostatic (GluA2) mechanisms is necessary for the recovery of vision.


Sign in / Sign up

Export Citation Format

Share Document