scholarly journals Ca2+handling ability of sarcoplasmic reticulum in cardiac muscle fibers

1995 ◽  
Vol 67 ◽  
pp. 131
Author(s):  
Nagomi Kurebayashi ◽  
Yasuo Oaawa
1971 ◽  
Vol 49 (1) ◽  
pp. 50-65 ◽  
Author(s):  
Paul H. Jewett ◽  
J. R. Sommer ◽  
E. A. Johnson

Cardiac muscle fibers of the hummingbird and finch have no transverse tubules and are smaller in diameter than those of mammalian hearts. The fibers are connected by intercalated discs which are composed of desmosomes and f. adherentes; small nexuses are often interspersed. As in cardiac muscle of several other animals, the junctional SR of the couplings is highly structured in these two birds but, in addition, and after having lost sarcolemmal contact, the junctional SR continues beyond the coupling to extend deep into the interior of the cells and to form belts around the Z-I regions of the sarcomeres. This portion of the sarcoplasmic reticulum, which we have named "extended junctional SR," and which is so prominent and invariant a feature of cardiac cells of hummingbirds and finches, has not been observed in chicken cardiac cells. The morphological differences between these species of birds may be related to respective differences in heart rates characteristic for these birds.


2000 ◽  
Vol 276 (7) ◽  
pp. 5353-5359 ◽  
Author(s):  
Christian C. Witt ◽  
Brenda Gerull ◽  
Michael J. Davies ◽  
Thomas Centner ◽  
Wolfgang A. Linke ◽  
...  

1962 ◽  
Vol 202 (5) ◽  
pp. 905-908 ◽  
Author(s):  
Louis Tobian ◽  
Jeanette Janecek ◽  
John Foker ◽  
Dorothy Ferreira

Administration of chlorothiazide to rats for 9 weeks produces an increase of intracellular sodium and a decrease of intracellular potassium in skeletal muscle. However, in cardiac muscle, in the wall of mesenteric arterioles, in aortic wall, and in kidney there is no significant alteration in the amount of sodium, potassium, or chloride per unit of dry tissue weight. The water content of heart muscle, skeletal muscle, and kidney is not altered by chlorothiazide. The intracellular concentration of Na and K in heart muscle is likewise unaltered by chlorothiazide. However, chlorothiazide produces a highly significant 44% increase in the granularity of the juxtaglomerular cells. The data in general suggest that chlorothiazide decreases the volume of extracellular fluid, but does not reduce the content of intracellular Na. Extracellular K is reduced as well as the K inside skeletal muscle fibers. However, the amount of K inside cardiac muscle fibers is unchanged by chlorothiazide.


Sign in / Sign up

Export Citation Format

Share Document