scholarly journals Topographic mapping and compression elasticity analysis of skinned cardiac muscle fibers in vitro with atomic force microscopy and nanoindentation

2009 ◽  
Vol 42 (13) ◽  
pp. 2143-2150 ◽  
Author(s):  
Jie Zhu ◽  
Tanya Sabharwal ◽  
Aruna Kalyanasundaram ◽  
Lianhong Guo ◽  
Guodong Wang
2001 ◽  
Vol 82 (6) ◽  
pp. 1503-1508 ◽  
Author(s):  
O. I. Kiselyova ◽  
I. V. Yaminsky ◽  
E. M. Karger ◽  
O. Yu. Frolova ◽  
Y. L. Dorokhov ◽  
...  

The structure of complexes formed in vitro by tobacco mosaic virus (TMV)-coded movement protein (MP) with TMV RNA and short (890 nt) synthetic RNA transcripts was visualized by atomic force microscopy on a mica surface. MP molecules were found to be distributed along the chain of RNA and the structure of MP–RNA complexes depended on the molar MP:RNA ratios at which the complexes were formed. A rise in the molar MP:TMV RNA ratio from 20:1 to 60–100:1 resulted in an increase in the density of the MP packaging on TMV RNA and structural conversion of complexes from RNase-sensitive ‘beads-on-a-string’ into a ‘thick string’ form that was partly resistant to RNase. The ‘thick string’-type RNase-resistant complexes were also produced by short synthetic RNA transcripts at different MP:RNA ratios. The ‘thick string’ complexes are suggested to represent clusters of MP molecules cooperatively bound to discrete regions of TMV RNA and separated by protein-free RNA segments.


2004 ◽  
Vol 18 (4) ◽  
pp. 587-596 ◽  
Author(s):  
T. A. Doneva ◽  
H. B. Yin ◽  
P. Stephens ◽  
W. R. Bowen ◽  
D. W. Thomas

An engineering approach to the development of biomaterials for promotion of wound healing emphasises the importance of a well‒controlled architecture and concentrates on optimisation of morphology and surface chemistry to stimulate guidance of the cells within the wound environment. A series of three‒dimensional porous scaffolds with 80–90% bulk porosity and fully interconnected macropores were prepared from two biodegradable materials – cellulose acetate (CA) and poly (lactic‒co‒glycolic acid) (PLGA) through the phase inversion mechanism of formation. Surface morphology of obtained scaffolds was determined using atomic force microscopy (AFM) in conjunction with optical microscopy. Scanning Electron Microscopy (SEM) was applied to characterise scaffolds bulk morphology. Biocompatibility and biofunctionality of the prepared materials were assessed through a systematic study of cell/material interactions using atomic force microscopy (AFM) methodologies together within vitrocellular assays. Preliminary data with human fibroblasts demonstrated a positive influence of both scaffolds on cellular attachment and growth. The adhesion of cells on both biomaterials were quantified by AFM force measurements in conjunction with a cell probe technique since, for the first time, a fibroblast probe has been successfully developed and optimal conditions of immobilisation of the cells on the AFM cantilever have been experimentally determined.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ana-María Zaske ◽  
Delia Danila ◽  
Michael C. Queen ◽  
Eva Golunski ◽  
Jodie L. Conyers

Although atomic force microscopy (AFM) has been used extensively to characterize cell membrane structure and cellular processes such as endocytosis and exocytosis, the corrugated surface of the cell membrane hinders the visualization of extracellular entities, such as liposomes, that may interact with the cell. To overcome this barrier, we used 90 nm nanogold particles to label FITC liposomes and monitor their endocytosis on human coronary artery endothelial cells (HCAECs) in vitro. We were able to study the internalization process of gold-coupled liposomes on endothelial cells, by using AFM. We found that the gold-liposomes attached to the HCAEC cell membrane during the first 15–30 min of incubation, liposome cell internalization occurred from 30 to 60 min, and most of the gold-labeled liposomes had invaginated after 2 hr of incubation. Liposomal uptake took place most commonly at the periphery of the nuclear zone. Dynasore monohydrate, an inhibitor of endocytosis, obstructed the internalization of the gold-liposomes. This study showed the versatility of the AFM technique, combined with fluorescent microscopy, for investigating liposome uptake by endothelial cells. The 90 nm colloidal gold nanoparticles proved to be a noninvasive contrast agent that efficiently improves AFM imaging during the investigation of biological nanoprocesses.


2000 ◽  
Vol 74 (3) ◽  
pp. 211-214 ◽  
Author(s):  
Hiroyuki Ohshiro ◽  
Ryo Suzuki ◽  
Tadahide Furuno ◽  
Mamoru Nakanishi

Sign in / Sign up

Export Citation Format

Share Document