scholarly journals Incompressible Limit for Solutionsof the Isentropic Navier–Stokes Equationswith Dirichlet Boundary Conditions

1999 ◽  
Vol 78 (5) ◽  
pp. 461-471 ◽  
Author(s):  
B. Desjardins ◽  
E. Grenier ◽  
P.-L. Lions ◽  
N. Masmoudi
2014 ◽  
Vol 15 (01) ◽  
pp. 1450012 ◽  
Author(s):  
Ana Bela Cruzeiro ◽  
Iván Torrecilla

We prove weak existence of Euler equation (or Navier–Stokes equation) perturbed by a multiplicative noise on bounded domains of ℝ2 with Dirichlet boundary conditions and with periodic boundary conditions. Solutions are H1 regular. The equations are of transport type.


2016 ◽  
Vol 26 (11) ◽  
pp. 2071-2109 ◽  
Author(s):  
Johannes Lankeit

We consider the coupled chemotaxis Navier–Stokes model with logistic source terms: [Formula: see text] [Formula: see text] [Formula: see text] in a bounded, smooth domain [Formula: see text] under homogeneous Neumann boundary conditions for [Formula: see text] and [Formula: see text] and homogeneous Dirichlet boundary conditions for [Formula: see text] and with given functions [Formula: see text] satisfying certain decay conditions and [Formula: see text] for some [Formula: see text]. We construct weak solutions and prove that after some waiting time they become smooth and finally converge to the semi-trivial steady state [Formula: see text].


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Eva Llabrés

Abstract We find the most general solution to Chern-Simons AdS3 gravity in Fefferman-Graham gauge. The connections are equivalent to geometries that have a non-trivial curved boundary, characterized by a 2-dimensional vielbein and a spin connection. We define a variational principle for Dirichlet boundary conditions and find the boundary stress tensor in the Chern-Simons formalism. Using this variational principle as the departure point, we show how to treat other choices of boundary conditions in this formalism, such as, including the mixed boundary conditions corresponding to a $$ T\overline{T} $$ T T ¯ -deformation.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Adrien Fiorucci ◽  
Romain Ruzziconi

Abstract The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in n dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent 2-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the 2-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the Λ-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in n dimensions.


2021 ◽  
pp. 104123
Author(s):  
Firdous A. Shah ◽  
Mohd Irfan ◽  
Kottakkaran S. Nisar ◽  
R.T. Matoog ◽  
Emad E. Mahmoud

Sign in / Sign up

Export Citation Format

Share Document