scholarly journals Charge algebra in Al(A)dSn spacetimes

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Adrien Fiorucci ◽  
Romain Ruzziconi

Abstract The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in n dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent 2-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the 2-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the Λ-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in n dimensions.

2006 ◽  
Vol 4 (4) ◽  
Author(s):  
Daniel Boykis ◽  
Patrick Moylan

We study solutions of the wave equation with circular Dirichlet boundary conditions on a flat two-dimensional Euclidean space, and we also study the analogous problem on a certain curved space which is a Lorentzian variant of the 3-sphere. The curved space goes over into the usual flat space-time as the radius R of the curved space goes to infinity. We show, at least in some cases, that solutions of certain Dirichlet boundary value problems are obtained much more simply in the curved space than in the flat space. Since the flat space is the limit R → ∞ of the curved space, this gives an alternative method of obtaining solutions of a corresponding problem in Euclidean space.


Author(s):  
Vitoriano Ruas

Abstract In a series of papers published since 2017 the author introduced a simple alternative of the $n$-simplex type, to enhance the accuracy of approximations of second-order boundary value problems subject to Dirichlet boundary conditions, posed on smooth curved domains. This technique is based upon trial functions consisting of piecewise polynomials defined on straight-edged triangular or tetrahedral meshes, interpolating the Dirichlet boundary conditions at points of the true boundary. In contrast, the test functions are defined by the standard degrees of freedom associated with the underlying method for polytopic domains. While the mathematical analysis of the method for Lagrange and Hermite methods for two-dimensional second- and fourth-order problems was carried out in earlier paper by the author this paper is devoted to the study of the three-dimensional case. Well-posedness, uniform stability and optimal a priori error estimates in the energy norm are proved for a tetrahedron-based Lagrange family of finite elements. Novel error estimates in the $L^2$-norm, for the class of problems considered in this work, are also proved. A series of numerical examples illustrates the potential of the new technique. In particular, its superior accuracy at equivalent cost, as compared to the isoparametric technique, is highlighted.


2012 ◽  
Vol 11 (1 and 2) ◽  
Author(s):  
Christopher Cox

The question as to whether the shape of a drum can be heard has existed for around fifty years. The simple answer is ‘no’ as shown through the construction of isospectral domains. Isospectral domains are non-isometric domains that display the same spectra of frequencies of sound. These frequencies, deduced from the eigenvalues of the Laplacian, are determined by solving the wave equation in a domain omega , where alpha-omega is subject to Dirichlet boundary conditions. This paper presents methods to expand the already existing two dimensional transplantation proof into Euclidean 3-space and, through these means, provides a number of three dimensional isospectral domains.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Eva Llabrés

Abstract We find the most general solution to Chern-Simons AdS3 gravity in Fefferman-Graham gauge. The connections are equivalent to geometries that have a non-trivial curved boundary, characterized by a 2-dimensional vielbein and a spin connection. We define a variational principle for Dirichlet boundary conditions and find the boundary stress tensor in the Chern-Simons formalism. Using this variational principle as the departure point, we show how to treat other choices of boundary conditions in this formalism, such as, including the mixed boundary conditions corresponding to a $$ T\overline{T} $$ T T ¯ -deformation.


2021 ◽  
pp. 104123
Author(s):  
Firdous A. Shah ◽  
Mohd Irfan ◽  
Kottakkaran S. Nisar ◽  
R.T. Matoog ◽  
Emad E. Mahmoud

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yuhua Long ◽  
Shaohong Wang ◽  
Jiali Chen

Abstract In the present paper, a class of fourth-order nonlinear difference equations with Dirichlet boundary conditions or periodic boundary conditions are considered. Based on the invariant sets of descending flow in combination with the mountain pass lemma, we establish a series of sufficient conditions on the existence of multiple solutions for these boundary value problems. In addition, some examples are provided to demonstrate the applicability of our results.


2008 ◽  
Vol 15 (3) ◽  
pp. 531-539
Author(s):  
Temur Jangveladze ◽  
Zurab Kiguradze

Abstract Large time behavior of solutions to the nonlinear integro-differential equation associated with the penetration of a magnetic field into a substance is studied. The rate of convergence is given, too. Dirichlet boundary conditions with homogeneous data are considered.


Sign in / Sign up

Export Citation Format

Share Document