renormalization procedure
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Ignacio J. Araya ◽  
José D. Edelstein ◽  
Alberto Rivadulla Sánchez ◽  
David Vázquez Rodríguez ◽  
Alejandro Vilar López

Abstract We implement a universal method for renormalizing AdS gravity actions applicable to arbitrary higher curvature theories in up to five dimensions. The renormalization procedure considers the extrinsic counterterm for Einstein-AdS gravity given by the Kounterterms scheme, but with a theory-dependent coupling constant that is fixed by the requirement of renormalization for the vacuum solution. This method is shown to work for a generic higher curvature gravity with arbitrary couplings except for a zero measure subset, which includes well-known examples where the asymptotic behavior is modified and the AdS vacua are degenerate, such as Chern-Simons gravity in 5D, Conformal Gravity in 4D and New Massive Gravity in 3D. In order to show the universality of the scheme, we perform a decomposition of the equations of motion into their normal and tangential components with respect to the Poincare coordinate and study the Fefferman-Graham expansion of the metric. We verify the cancellation of divergences of the on-shell action and the well-posedness of the variational principle.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Laurent Freidel ◽  
Roberto Oliveri ◽  
Daniele Pranzetti ◽  
Simone Speziale

Abstract We propose an extension of the BMS group, which we refer to as Weyl BMS or BMSW for short, that includes super-translations, local Weyl rescalings and arbitrary diffeomorphisms of the 2d sphere metric. After generalizing the Barnich-Troessaert bracket, we show that the Noether charges of the BMSW group provide a centerless representation of the BMSW Lie algebra at every cross section of null infinity. This result is tantamount to proving that the flux-balance laws for the Noether charges imply the validity of the asymptotic Einstein’s equations at null infinity. The extension requires a holographic renormalization procedure, which we construct without any dependence on background fields. The renormalized phase space of null infinity reveals new pairs of conjugate variables. Finally, we show that BMSW group elements label the gravitational vacua.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Giorgos Anastasiou ◽  
Ignacio J. Araya ◽  
Robert B. Mann ◽  
Rodrigo Olea

Abstract We study the renormalization of Entanglement Entropy in holographic CFTs dual to Lovelock gravity. It is known that the holographic EE in Lovelock gravity is given by the Jacobson-Myers (JM) functional. As usual, due to the divergent Weyl factor in the Fefferman-Graham expansion of the boundary metric for Asymptotically AdS spaces, this entropy functional is infinite. By considering the Kounterterm renormalization procedure, which utilizes extrinsic boundary counterterms in order to renormalize the on-shell Lovelock gravity action for AAdS spacetimes, we propose a new renormalization prescription for the Jacobson-Myers functional. We then explicitly show the cancellation of divergences in the EE up to next-to-leading order in the holographic radial coordinate, for the case of spherical entangling surfaces. Using this new renormalization prescription, we directly find the C−function candidates for odd and even dimensional CFTs dual to Lovelock gravity. Our results illustrate the notable improvement that the Kounterterm method affords over other approaches, as it is non-perturbative and does not require that the Lovelock theory has limiting Einstein behavior.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Adrien Fiorucci ◽  
Romain Ruzziconi

Abstract The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in n dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent 2-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the 2-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the Λ-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in n dimensions.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Romain Ruzziconi ◽  
Céline Zwikel

Abstract We address the questions of conservation and integrability of the charges in two and three-dimensional gravity theories at infinity. The analysis is performed in a framework that allows us to treat simultaneously asymptotically locally AdS and asymptotically locally flat spacetimes. In two dimensions, we start from a general class of models that includes JT and CGHS dilaton gravity theories, while in three dimensions, we work in Einstein gravity. In both cases, we construct the phase space and renormalize the divergences arising in the symplectic structure through a holographic renormalization procedure. We show that the charge expressions are generically finite, not conserved but can be made integrable by a field-dependent redefinition of the asymptotic symmetry parameters.


2021 ◽  
Vol 381 (3) ◽  
pp. 889-945
Author(s):  
Federico Camia ◽  
Alberto Gandolfi ◽  
Giovanni Peccati ◽  
Tulasi Ram Reddy

AbstractWe study fields reminiscent of vertex operators built from the Brownian loop soup in the limit as the loop soup intensity tends to infinity. More precisely, following Camia et al. (Nucl Phys B 902:483–507, 2016), we take a (massless or massive) Brownian loop soup in a planar domain and assign a random sign to each loop. We then consider random fields defined by taking, at every point of the domain, the exponential of a purely imaginary constant times the sum of the signs associated to the loops that wind around that point. For domains conformally equivalent to a disk, the sum diverges logarithmically due to the small loops, but we show that a suitable renormalization procedure allows to define the fields in an appropriate Sobolev space. Subsequently, we let the intensity of the loop soup tend to infinity and prove that these vertex-like fields tend to a conformally covariant random field which can be expressed as an explicit functional of the imaginary Gaussian multiplicative chaos with covariance kernel given by the Brownian loop measure. Besides using properties of the Brownian loop soup and the Brownian loop measure, a main tool in our analysis is an explicit Wiener–Itô chaos expansion of linear functionals of vertex-like fields. Our methods apply to other variants of the model in which, for example, Brownian loops are replaced by disks.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Enore Guadagnini ◽  
Vittoria Urso

AbstractWe consider the perturbative renormalization of the Schwinger–Dyson functional, which is the generating functional of the expectation values of the products of the composite operator given by the field derivative of the action. It is argued that this functional plays an important role in the topological Chern–Simons and BF quantum field theories. It is shown that, by means of the renormalized perturbation theory, a canonical renormalization procedure for the Schwinger–Dyson functional is obtained. The combinatoric structure of the Feynman diagrams is illustrated in the case of scalar models. For the Chern–Simons and the BF gauge theories, the relationship between the renormalized Schwinger–Dyson functional and the generating functional of the correlation functions of the gauge fields is produced.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 556
Author(s):  
Sergei Koltcov ◽  
Vera Ignatenko

In practice, to build a machine learning model of big data, one needs to tune model parameters. The process of parameter tuning involves extremely time-consuming and computationally expensive grid search. However, the theory of statistical physics provides techniques allowing us to optimize this process. The paper shows that a function of the output of topic modeling demonstrates self-similar behavior under variation of the number of clusters. Such behavior allows using a renormalization technique. A combination of renormalization procedure with the Renyi entropy approach allows for quick searching of the optimal number of topics. In this paper, the renormalization procedure is developed for the probabilistic Latent Semantic Analysis (pLSA), and the Latent Dirichlet Allocation model with variational Expectation–Maximization algorithm (VLDA) and the Latent Dirichlet Allocation model with granulated Gibbs sampling procedure (GLDA). The experiments were conducted on two test datasets with a known number of topics in two different languages and on one unlabeled test dataset with an unknown number of topics. The paper shows that the renormalization procedure allows for finding an approximation of the optimal number of topics at least 30 times faster than the grid search without significant loss of quality.


Proceedings ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 5 ◽  
Author(s):  
Sergei Koltcov ◽  
Vera Ignatenko ◽  
Sergei Pashakhin

In practice, the critical step in building machine learning models of big data (BD) is costly in terms of time and the computing resources procedure of parameter tuning with a grid search. Due to the size, BD are comparable to mesoscopic physical systems. Hence, methods of statistical physics could be applied to BD. The paper shows that topic modeling demonstrates self-similar behavior under the condition of a varying number of clusters. Such behavior allows using a renormalization technique. The combination of a renormalization procedure with the Rényi entropy approach allows for fast searching of the optimal number of clusters. In this paper, the renormalization procedure is developed for the Latent Dirichlet Allocation (LDA) model with a variational Expectation-Maximization algorithm. The experiments were conducted on two document collections with a known number of clusters in two languages. The paper presents results for three versions of the renormalization procedure: (1) a renormalization with the random merging of clusters, (2) a renormalization based on minimal values of Kullback–Leibler divergence and (3) a renormalization with merging clusters with minimal values of Rényi entropy. The paper shows that the renormalization procedure allows finding the optimal number of topics 26 times faster than grid search without significant loss of quality.


2019 ◽  
Vol 16 (03) ◽  
pp. 579-602
Author(s):  
Lin Jiu ◽  
Christophe Vignat ◽  
Tanay Wakhare

We introduce a symbolic representation of [Formula: see text]-fold harmonic sums at negative indices. This representation allows us to recover and extend some recent results by Duchamp et al., such as recurrence relations and generating functions for these sums. This approach is also applied to the study of the family of extended Bernoulli polynomials, which appear in the computation of harmonic sums at negative indices. It also allows us to reinterpret the Raabe analytic continuation of the multiple zeta function as both a constant term extension of Faulhaber’s formula, and as the result of a natural renormalization procedure for Faulhaber’s formula.


Sign in / Sign up

Export Citation Format

Share Document