INFLUENCE OF THE EFFECT OF ELECTROHYDRODYNAMIC DISINTEGRATION OF CHARGED DROPS ON FINE DUST COLLECTION IN WET SCRUBBERS

2001 ◽  
Vol 32 ◽  
pp. 947-948
Author(s):  
AN. M. BOLOGA ◽  
AL. M. BOLOGA ◽  
H.-R. PAUR ◽  
H. SEIFERT
2021 ◽  
Vol 1 (3(57)) ◽  
pp. 21-25
Author(s):  
Andrei Torsky ◽  
Alexander Volnenko ◽  
Leonid Plyatsuk ◽  
Larysa Hurets ◽  
Daulet Zhumadullayev ◽  
...  

The object of research is the efficiency of dust collection of fine dust in an apparatus with an intense turbulent mode of phase interaction. One of the most problematic areas of the existing dust and gas cleaning equipment is the low efficiency of collecting fine dust. Effective cleaning of exhaust gases from dust involves the use of multi-stage cleaning systems, including wet and dry dust cleaning devices, which entails high capital and operating costs. These disadvantages are eliminated in the developed design of the cyclone-vortex dust collector with two contact zones. The device implements both dry and wet dust collection mechanisms, which allows for high efficiency of dust removal at high productivity. The conducted studies of the total and fractional efficiency of dust collection when changing the operating parameters of the developed device showed that the efficiency of collecting fine dust is 98–99 %. The increase in the efficiency of dust collection in the dry stage of the device is due to an increase in centrifugal force. In the wet stage of contact, the efficiency reaches its maximum values due to the vortex crushing of the liquid in the nozzle zone of the apparatus. Studies of the fractional efficiency of the apparatus show that with an increase in the diameter of the captured particles, the efficiency of the dust collection process for dry and wet stages, as well as the overall efficiency, increases. With an increase in the density of irrigation, the overall efficiency of dust collection in the apparatus increases. It has been established that an increase in the efficiency of capturing highly dispersed particles occurs due to turbulent diffusion, the value of which is determined by the frequency of turbulent pulsations and the degree of entrainment of particles during the pulsating motion of packed bodies. To describe the results obtained, a centrifugal-inertial model for a dry contact stage and a turbulent-diffusion model of solid particle deposition for a wet contact stage are proposed, which make it possible to calculate the dust collection efficiency of the contact stages, as well as the overall efficiency of the cyclone-vortex apparatus. The results obtained show the prospects of using devices of this design at heat power plants and other industries.


Author(s):  
Ivan Kozii ◽  
◽  
Leonid Plyatsuk ◽  
Larisa Нurets ◽  
◽  
...  

The work is devoted to the reduction of the technogenic impact on the environment from the emissions of heat power engineering by using a highly efficient equipment for the complex purification of exhaust gases — a equipment with a regular pulsating plug (RPP). The aim of the study is the physical and mathematical description of the mechanisms of the process of capturing fine dust in a equipment with an on-load tap changer. This goal is achieved by describing the physical picture of the dust collection process in an experimental equipment with an on-load tap-changer; mathematical description of the condensation capture of fine dust; descriptions of the process of droplet distribution in the layer of turbulizing packing elements during upward movement of phases. As a result of calculations, an equation was obtained for determining the radius of a particle in the process of condensation of a vapor-gas-liquid system, which allows one to determine the further possibility of trapping particles due to the inertial or turbulent-diffusion mechanism in the device. An equation is obtained for calculating the diameter of liquid droplets formed during the crushing of liquid flows by turbulizing packing elements, which allows us to conclude that the phase contact surface is developed due to the pulsating movement of packing elements. Studies of the equipment with an on-load tapchanger allow us to speak about the possibility of its use for the complex cleaning of dust and gas emissions from heat power enterprises in order to reduce the negative impact on the environment.


2015 ◽  
Vol 26 (2) ◽  
pp. 229-233 ◽  
Author(s):  
Tae-Yeong Jeon ◽  
Jae-Yong Kim
Keyword(s):  

2014 ◽  
Vol 955-959 ◽  
pp. 2594-2599
Author(s):  
Ruo Bai Ma ◽  
Kai Quan Wang ◽  
Hai Pu Bi

Fine dust in the atmosphere is one of the key factors causing air pollution as well as fog and haze. Due to the limited efficiency of fine dust collection in conventional dust removal technology, pre-charged dust coagulation between particles to increase the effective collecting diameter, is an effective way to improve the dust collection efficiency. Currently, coagulation technology research falls into three mainly aspects: electric coagulation technology in constant electric field, alternating electric field and pulsed electric fields. The advantages and disadvantages as well as the research status and trends are fully analyzed in this paper, of which the technology that uses alternating or pulsed power supply for pre-charge device has more advantages and efficiency in coagulation. They will improve the efficiency of electric coagulation in further on the improved airflow pole with form and structure and the technical development of alternating or pulsed powers, which will make the coagulation and filtration technologies and new composite technology an important development direction of fine dust governance.


Author(s):  
Janusz Krawczyk ◽  
Katarzyna Kocewiak ◽  
Jan Talaga ◽  
Irina Postnikova

The high efficiency of intensive operation of wet scrubbers is the result of a simultaneous formation of different mechanisms of dust particle collectors. The collectors can be understood as droplets of atomised liquid, bubbles formed in the conditions of intensive barbotage, liquid surface and wet surfaces. All collectors are formed during the operation of the circulating unit. The deposition of dust particles from gas occurs as a result of centrifugal forces and secondary circulations in the guide duct as well as the effect of the water curtain, liquid barbotage and the flow of dusty gas through the droplet-splash layer. Discussions substantiating the possibility of confirming the effect of suspension viscosity on the efficiency of the dust collection process can be related both to the analysis of basic mechanisms affecting the deposition of particles on liquid collectors and the conditions of generating collectors. In total liquid recirculation in wet dedusting equipment, concentration of solids in a liquid rises. In such conditions, a gradual decrease in their dedusting efficiency is possible. The effect depends on dust physiochemical properties, kinetic energy of particles, the type of equipment used, and specifically on the way of organization of the contact of the liquid and gas phases. Studies of the effectiveness of dedusting depending on various factors are given in the next article by the same authors.


1976 ◽  
Vol 31 (6) ◽  
pp. 499-503 ◽  
Author(s):  
David F. Ciliberti ◽  
Brian W. Lancaster
Keyword(s):  

2017 ◽  
Vol 19 (4) ◽  
pp. 1-7 ◽  
Author(s):  
Janusz Krawczyk

Abstract The high efficiency of industrial wet scrubbers is the result of a simultaneous formation of dust particle collectors. Collectors can be understood as droplets of atomised liquid, bubbles formed in the conditions of intensive barbotage, liquid surface and wet surfaces. All collectors are formed during the operation of a circulating unit. The efficiency of dust collection process also depends on the ability of dust particles to be absorbed by collectors. The study provides an experimental analysis of the effect of the increasing concentration of a dust collection liquid in the conditions of full liquid recirculation on the efficiency of dust collection process in the examined types of collectors.


Sign in / Sign up

Export Citation Format

Share Document