Simulation and iterative data inversion of DMPS measurements in the nanometer size range

1997 ◽  
Vol 28 ◽  
pp. S727-S728
Author(s):  
K. Theiner ◽  
H. Fißan ◽  
S. Neumann
1986 ◽  
Vol 19 (2-3) ◽  
pp. 359-374 ◽  
Author(s):  
A.J. Lecloux ◽  
J. Bronckart ◽  
F. Noville ◽  
C. Dodet ◽  
P. Marchot ◽  
...  

Langmuir ◽  
1997 ◽  
Vol 13 (15) ◽  
pp. 3921-3926 ◽  
Author(s):  
Paul A. Buining ◽  
Bruno M. Humbel ◽  
Albert P. Philipse ◽  
Arie J. Verkleij

2015 ◽  
Vol 90 ◽  
pp. 1-13 ◽  
Author(s):  
Tinja Olenius ◽  
Oona Kupiainen-Määttä ◽  
Kari E.J. Lehtinen ◽  
Hanna Vehkamäki

1997 ◽  
Vol 501 ◽  
Author(s):  
D. S. Rimai ◽  
L. P. Demejo ◽  
B. Gady ◽  
D. J. Quesnel ◽  
R. C. Bowen ◽  
...  

ABSTRACTThe physics of particle adhesion is a complex subject and depends on the interaction mechanisms and the mechanical properties of the contacting materials. These interactions, which tend to be caused by van der Waals and electrostatic interactions, generate stresses that, in turn, result in deformations of the contacting materials. Most of today's understanding of particle adhesion is based on theories that assume that the adhesion-induced strains are small. However, for small particles, the strains can be quite large, resulting in yielding and plastic deformations. In some instances, the entire particle can become engulfed by the substrate. This paper discusses the nature of the deformations, as are presently known, and extrapolates today's understanding of particle adhesion, which is based on the micrometer-size scale, to nanometer-size particles.


2006 ◽  
Vol 293 (2) ◽  
pp. 384-393 ◽  
Author(s):  
Sven Ude ◽  
Juan Fernandez de la Mora ◽  
James N. Alexander ◽  
Daniel A. Saucy

2003 ◽  
Vol 361 (1-2) ◽  
pp. 160-164 ◽  
Author(s):  
M. Zhao ◽  
J.C. Li ◽  
Q. Jiang

1986 ◽  
Vol 19 (4) ◽  
pp. 359-374 ◽  
Author(s):  
A.J. Lecloux ◽  
J. Bronckart ◽  
F. Noville ◽  
C. Dodet ◽  
P. Marchot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document