differential mobility analyzer
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 24)

H-INDEX

35
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Shuang Han ◽  
Juan Hong ◽  
Qingwei Luo ◽  
Hanbing Xu ◽  
Haobo Tan ◽  
...  

Abstract. Hygroscopic properties of 23 organics including carboxylic acids, amino acids, sugars and alcohols were characterized using a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). We show that hygroscopicity of organics varies widely with different functional groups and organics with additional functional groups are more hygroscopic. However, some compounds sharing the same molecular formula or functionality show quite different hygroscopicity, demonstrating that other physico-chemical properties may contribute to their hygroscopicity as well. If the organics are fully dissolved in water (solubility > 7× 10−1 g/ml), we found that their hygroscopicity is mainly controlled by their molecular weight. For the organics that are not fully dissolved in water (slightly soluble: 5 × 10−4 g/ml < solubility < 7 × 10−1 g/ml), we observed that some of them show no obvious water uptake, which probably due to that they may not deliquesce under our studied conditions up to 90 % RH. The other type of slightly soluble organics is moderate hygroscopic and the larger their solubility the higher their hygroscopicity. Moreover, the hygroscopicity of organics generally increased with O : C ratios, although this relationship is not linear. Hygroscopicity of organic compounds were also predicted by two thermodynamic models using the Extended Aerosol Inorganics Model (E-AIM) and UManSysProp. Both models do not consider phase transition and intermolecular interactions in the simulations and show poor representation of the hygroscopicity for most of the organics.


2021 ◽  
Vol 14 (6) ◽  
pp. 4507-4516
Author(s):  
Stavros Amanatidis​​​​​​​ ◽  
Yuanlong Huang ◽  
Buddhi Pushpawela ◽  
Benjamin C. Schulze ◽  
Christopher M. Kenseth ◽  
...  

Abstract. Ambient aerosol size distributions obtained with a compact scanning mobility analyzer, the “Spider” differential mobility analyzer (DMA), are compared to those obtained with a conventional mobility analyzer, with specific attention to the effect of mobility resolution on the measured size distribution parameters. The Spider is a 12 cm diameter radial differential mobility analyzer that spans the 10–500 nm size range with 30 s mobility scans. It achieves its compact size by operating at a nominal mobility resolution R=3 (sheath flow = 0.9 L min−1; aerosol flow = 0.3 L min−1) in place of the higher ratio of sheath flow to aerosol flow commonly used. The question addressed here is whether the lower resolution is sufficient to capture key characteristics of ambient aerosol size distributions. The Spider, operated at R=3 with 30 s up- and downscans, was co-located with a TSI 3081 long-column mobility analyzer, operated at R=10 with a 360 s sampling duty cycle. Ambient aerosol data were collected over 26 consecutive days of continuous operation, in Pasadena, CA. Over the 17–500 nm size range, the two instruments exhibit excellent correlation in the total particle number concentrations and geometric mean diameters, with regression slopes of 1.13 and 1.00, respectively. Our results suggest that particle sizing at a lower resolution than typically employed may be sufficient to obtain key properties of ambient size distributions, at least for these two moments of the size distribution. Moreover, it enables better counting statistics, as the wider transfer function for a given aerosol flow rate results in a higher counting rate.


2021 ◽  
Vol 21 (9) ◽  
pp. 6999-7022
Author(s):  
Eugene F. Mikhailov ◽  
Mira L. Pöhlker ◽  
Kathrin Reinmuth-Selzle ◽  
Sergey S. Vlasenko ◽  
Ovid O. Krüger ◽  
...  

Abstract. Pollen grains emitted from vegetation can release subpollen particles (SPPs) that contribute to the fine fraction of atmospheric aerosols and may act as cloud condensation nuclei (CCN), ice nuclei (IN), or aeroallergens. Here, we investigate and characterize the hygroscopic growth and CCN activation of birch, pine, and rapeseed SPPs. A high-humidity tandem differential mobility analyzer (HHTDMA) was used to measure particle restructuring and water uptake over a wide range of relative humidity (RH) from 2 % to 99.5 %, and a continuous flow CCN counter was used for size-resolved measurements of CCN activation at supersaturations (S) in the range of 0.2 % to 1.2 %. For both subsaturated and supersaturated conditions, effective hygroscopicity parameters, κ, were obtained by Köhler model calculations. Gravimetric and chemical analyses, electron microscopy, and dynamic light scattering measurements were performed to characterize further properties of SPPs from aqueous pollen extracts such as chemical composition (starch, proteins, DNA, and inorganic ions) and the hydrodynamic size distribution of water-insoluble material. All investigated SPP samples exhibited a sharp increase of water uptake and κ above ∼95 % RH, suggesting a liquid–liquid phase separation (LLPS). The HHTDMA measurements at RH >95 % enable closure between the CCN activation at water vapor supersaturation and hygroscopic growth at subsaturated conditions, which is often not achieved when hygroscopicity tandem differential mobility analyzer (HTDMA) measurements are performed at lower RH where the water uptake and effective hygroscopicity may be limited by the effects of LLPS. Such effects may be important not only for closure between hygroscopic growth and CCN activation but also for the chemical reactivity, allergenic potential, and related health effects of SPPs.


2021 ◽  
Author(s):  
Paap Koemets ◽  
Sander Mirme ◽  
Kuno Kooser ◽  
Heikki Junninen

&lt;p&gt;The Highly Oxidized Molecule Ion Spectrometer (HOMIS) is a novel instrument for measuring the total concentration of highly oxidized molecules (HOM-s) (Bianchi et al., 2019) at atmospheric pressure. The device combines a chemical ionization charger with a multi-channel differential mobility analyzer. The chemical ionization charger is based on the principles outlined by Eisele and Tanner (1993). The charger is attached to a parallel differential mobility analyzer identical to the ones used in the Neutral cluster and Air Ion Spectrometer (NAIS, Mirme 2011), but with modified sample and sheath air flow rates to improve the mobility resolution of the device. The complete mobility distribution in the range from 3.2 to 0.056 cm&lt;sup&gt;2&lt;/sup&gt;/V/s is measured simultaneously by 25 electrometers. The range captures the charger ions, monomers, dimers, trimers but also extends far towards larger particles to possibly detect larger HOM-s that have not been measured with existing instrumentation. The maximum time resolution of the device is 1 second allowing it to detect rapid changes in the sample. The device has been designed to be easy to use, require little maintenance and work reliably in various environments during long term measurements.&lt;/p&gt;&lt;p&gt;First results of the prototype were acquired from laboratory experiments and ambient measurements. Experiments were conducted at the Laboratory of Environmental Physics, University of Tartu. The sample was drawn from a reaction chamber where alpha-pinene and ozone were introduced. Initial results show a good response when concentrations of alpha-pinene and ozone were changed.&amp;#160;&lt;/p&gt;&lt;p&gt;Ambient measurements were conducted at the SMEAR Estonia measurement station in a hemiboreal forest for 10 days in the spring and two months in the winter of 2020. The HOMIS measurements were performed together with a CI-APi-TOF (Jokinen et al., 2012).&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;References:&lt;/p&gt;&lt;p&gt;Bianchi, F., Kurt&amp;#233;n, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D., Wennberg, P. O., Mentel, T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A., Donahue, N., Kjaergaard, H. G. and Ehn, M. (2019), &amp;#8220;Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol&amp;#8221;, Chemical Reviews, 119, 6, 3472&amp;#8211;3509&lt;/p&gt;&lt;p&gt;Eisele, F. L., Tanner D. J. (1993), &amp;#8220;Measurement of the gas phase concentration of H2SO4 and methane sulfonic acid and estimates of H2SO4 production and loss in the atmosphere&amp;#8221;, JGR: Atmospheres, 98, 9001-9010&lt;/p&gt;&lt;p&gt;Jokinen T., Sipil&amp;#228; M., Junninen H., Ehn M., L&amp;#246;nn G., Hakala J., Pet&amp;#228;j&amp;#228; T., Mauldin III R. L., Kulmala M., and Worsnop D. R. (2012), &amp;#8220;Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF&amp;#8221;, Atmospheric Chemistry and Physics, 12, 4117&amp;#8211;4125&lt;/p&gt;&lt;p&gt;Mirme, S. (2011), &amp;#8220;Development of nanometer aerosol measurement technology&amp;#8221;, Doctoral thesis, University of Tartu&lt;/p&gt;


2020 ◽  
Vol 13 (10) ◽  
pp. 5551-5567
Author(s):  
Ting Lei ◽  
Nan Ma ◽  
Juan Hong ◽  
Thomas Tuch ◽  
Xin Wang ◽  
...  

Abstract. Interactions between water and nanoparticles are relevant for atmospheric multiphase processes, physical chemistry, and materials science. Current knowledge of the hygroscopic and related physicochemical properties of nanoparticles, however, is restricted by the limitations of the available measurement techniques. Here, we present the design and performance of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. Detailed methods of calibration and validation are provided. Besides maintaining accurate and stable sheath and aerosol flow rates (±1 %), high accuracy of the differential mobility analyzer (DMA) voltage (±0.1 %) in the range of ∼0–50 V is crucial for achieving accurate sizing and small sizing offsets between the two DMAs (<1.4 %). To maintain a stable relative humidity (RH), the humidification system and the second DMA are placed in a well-insulated and air conditioner housing (±0.1 K). We also tested and discussed different ways of preventing predeliquescence in the second DMA. Our measurement results for ammonium sulfate nanoparticles are in good agreement with Biskos et al. (2006b), with no significant size effect on the deliquescence and efflorescence relative humidity (DRH and ERH, respectively) at diameters down to 6 nm. For sodium sulfate nanoparticles, however, we find a pronounced size dependence of DRH and ERH between 20 and 6 nm nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document