Hydroxymethylglutaryl-coenzyme A reductase inhibition stimulates caspase-1 activity and Th1-cytokine release in peripheral blood mononuclear cells

2000 ◽  
Vol 153 (2) ◽  
pp. 303-313 ◽  
Author(s):  
Marı́a Teresa Montero ◽  
Osvaldo Hernández ◽  
Yajaira Suárez ◽  
Joaquı́n Matilla ◽  
Antonio J Ferruelo ◽  
...  
Blood ◽  
2008 ◽  
Vol 112 (9) ◽  
pp. 3563-3573 ◽  
Author(s):  
Loes M. Kuijk ◽  
Jeffrey M. Beekman ◽  
Janet Koster ◽  
Hans R. Waterham ◽  
Joost Frenkel ◽  
...  

Mevalonate kinase deficiency (MKD) is an autoinflammatory disorder characterized by recurring fever episodes and results from disturbed isoprenoid biosynthesis. Lipopolysaccharide-stimulated peripheral blood mononuclear cells from MKD patients secrete high levels of interleukin-1β (IL-1β) because of the presence of hyperactive caspase-1, and this has been proposed to be the primary cause of recurring inflammation. Here we show that inhibition of HMG-CoA reductase by simvastatin treatment, mimicking MKD, results in increased IL-1β secretion in a Rac1/PI3K-dependent manner. Simvastatin treatment was found to activate protein kinase B (PKB)/c-akt, a primary effector of PI3K, and ectopic expression of constitutively active PKB was sufficient to induce IL-1β release. The small GTPase Rac1 was activated by simvastatin, and this was required for both PKB activation and IL-1β secretion. IL-1β release is mediated by caspase-1, and simvastatin treatment resulted in increased caspase-1 activity in a Rac1/PI3K-dependent manner. These data suggest that, in MKD, dysregulated isoprenoid biosynthesis activates Rac1/PI3K/PKB, resulting in caspase-1 activation with increased IL-1β release. Importantly, inhibition of Rac1 in peripheral blood mononuclear cells isolated from MKD patients resulted in a dramatic reduction in IL-1β release. These data suggest that pharmacologic inhibition of Rac1 could provide a novel therapeutic strategy for treatment of MKD.


2020 ◽  
Author(s):  
Nuntiya Pahumunto ◽  
Amina Basic ◽  
Anna-Karin Östberg ◽  
Rawee Teanpaisan ◽  
Gunnar Dahlen

Abstract Background: This study evaluated the effect of oral lactobacilli on the cytotoxicity and cytokine release from peripheral blood mononuclear cells (PBMCs) when exposed to Aggregatibacter actinomycetemcomitans subtypes in vitro. The supernatants and cell wall extracts (CWEs) of eight A. actinomycetemcomitans strains, representing different subtypes, and three Lactobacillus strains were used. The PBMCs from six blood donors were exposed to supernatants and CWEs of A. actinomycetemcomitans or Lactobacillus strains alone or combinations and untreated cells as control. The cytotoxicity was determined by trypan blue exclusion method and IL-1β secretion by ELISA. TNF-α, IL-6, and IL-8 secretions were measured using Bioplex Multiplex Immunoassay. Results: Supernatants or CWEs from all bacterial strains showed cytotoxicity and IL-1β secretion and the subtypes of A. actinomycetemcomitans showed generally a significantly higher effect on PBMCs than that of the Lactobacillus strains. Two highly toxic A. actinomycetemcomitans strains (JP2 and JP2-like) induced a higher response than all other strains. When combined, Lactobacillus significantly reduced the toxicity and the IL-1β secretion induced by A. acinomycetemcomitans. The effect varied between the subtypes and the reduction was highest for the JP2 and JP2-like strains. The Lactobacillus paracasei strain SD1 had a higher reducing effect than the other Lactobacillus strains. This strain had a consistent reducing effect on all subtypes of A. actinomycetemcomitans cytotoxicity, and release of IL-1β, IL-6, IL-8, and TNF-α from PBMCs of the blood donors. A strong and significant variation in cytokine release between the six blood donors was noticed.Conclusions: Lactobacillus spp. and L. paracasei SD1 in particular, showed a limited but statistically significant reducing interaction with A. actinomycetemcomitans toxicity and release of cytokines in vitro.


Sign in / Sign up

Export Citation Format

Share Document