scholarly journals Affinity labeling of the primary bilirubin binding site of human serum albumin.

1976 ◽  
Vol 251 (3) ◽  
pp. 801-807 ◽  
Author(s):  
C C Kuenzle ◽  
N Gitzelmann-Cumarasamy ◽  
K J Wilson
1976 ◽  
Vol 10 (10) ◽  
pp. 876-876
Author(s):  
N Gitzelmann-Cumarasamy ◽  
C C Kuenzle ◽  
G Duc

1979 ◽  
Vol 181 (1) ◽  
pp. 251-253 ◽  
Author(s):  
C Jacobsen ◽  
J Jacobsen

Binding of bilirubin and of L-tryptophan to dansylated albumins was investigated. Dansylation of less than one lysine residue per molecule of albumin did not affect the bilirubin binding, but decreased the L-tryptophan binding, indicating that dansylation had taken place in or near the l-tryptophan-binding site. Native albumin and albumin-bilirubin 1:1 complex showed the same affinity for L-tryptophan. The results indicate that, although L-tryptophan and bilirubin are bound in the same region, perhaps in a common cavity of the albumin molecule, such a cavity is sufficiently large to contain both ligands.


2020 ◽  
Vol 21 (16) ◽  
pp. 5740
Author(s):  
Hrvoje Rimac ◽  
Tana Tandarić ◽  
Robert Vianello ◽  
Mirza Bojić

Human serum albumin (HSA) is the most abundant carrier protein in the human body. Competition for the same binding site between different ligands can lead to an increased active concentration or a faster elimination of one or both ligands. Indomethacin and quercetin both bind to the binding site located in the IIA subdomain. To determine the nature of the HSA-indomethacin-quercetin interactions, spectrofluorometric, docking, molecular dynamics studies, and quantum chemical calculations were performed. The results show that the indomethacin and quercetin binding sites do not overlap. Moreover, the presence of quercetin does not influence the binding constant and position of indomethacin in the pocket. However, binding of quercetin is much more favorable in the presence of indomethacin, with its position and interactions with HSA significantly changed. These results provide a new insight into drug-drug interactions, which can be important in situations when displacement from HSA or other proteins is undesirable or even desirable. This principle could also be used to deliberately prolong or shorten the xenobiotics’ half-life in the body, depending on the desired outcomes.


RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 91756-91767 ◽  
Author(s):  
Md. Zahirul Kabir ◽  
Wei-Ven Tee ◽  
Saharuddin B. Mohamad ◽  
Zazali Alias ◽  
Saad Tayyab

Binding orientation of the GEF in the binding site III, located in subdomain IB of HSA.


Sign in / Sign up

Export Citation Format

Share Document