scholarly journals High molecular weight RNAs from Rous sarcoma virus and Moloney murine leukemia virus contain two subunits.

1976 ◽  
Vol 251 (1) ◽  
pp. 141-149
Author(s):  
A M King
1981 ◽  
Vol 1 (5) ◽  
pp. 394-407 ◽  
Author(s):  
J A Cooper ◽  
T Hunter

Chicken embryo cells transformed by the related avian sarcoma viruses PRC II and Fujinami sarcoma virus, or by the unrelated virus Y73, contain three phosphoproteins not observed in untransformed cells and increased levels of up to four other phosphoproteins. These same phosphoproteins are present in increased levels in cells transformed by Rous sarcoma virus, a virus which is apparently unrelated to the three aforementioned viruses. In all cases, the phosphoproteins contain phosphotyrosine and thus may be substrates for the tyrosine-specific protein kinases encoded by these viruses. In one case, the site(s) of tyrosine phosphorylation within the protein is the same for all four viruses. A homologous protein is also phosphorylated, at the same major site, in mouse 3T3 cells transformed by Rous sarcoma virus or by the further unrelated virus Abelson murine leukemia virus. A second phosphotyrosine-containing protein has been detected in both Rous sarcoma virus and Abelson murine leukemia virus-transformed 3T3 cells, but was absent from normal 3T3 cells and 3T3 cells transformed by various other viruses. We conclude that representatives of four apparently unrelated classes of transforming retroviruses all induce the phosphorylation of tyrosines present in the same set of cellular proteins.


1981 ◽  
Vol 1 (5) ◽  
pp. 394-407
Author(s):  
J A Cooper ◽  
T Hunter

Chicken embryo cells transformed by the related avian sarcoma viruses PRC II and Fujinami sarcoma virus, or by the unrelated virus Y73, contain three phosphoproteins not observed in untransformed cells and increased levels of up to four other phosphoproteins. These same phosphoproteins are present in increased levels in cells transformed by Rous sarcoma virus, a virus which is apparently unrelated to the three aforementioned viruses. In all cases, the phosphoproteins contain phosphotyrosine and thus may be substrates for the tyrosine-specific protein kinases encoded by these viruses. In one case, the site(s) of tyrosine phosphorylation within the protein is the same for all four viruses. A homologous protein is also phosphorylated, at the same major site, in mouse 3T3 cells transformed by Rous sarcoma virus or by the further unrelated virus Abelson murine leukemia virus. A second phosphotyrosine-containing protein has been detected in both Rous sarcoma virus and Abelson murine leukemia virus-transformed 3T3 cells, but was absent from normal 3T3 cells and 3T3 cells transformed by various other viruses. We conclude that representatives of four apparently unrelated classes of transforming retroviruses all induce the phosphorylation of tyrosines present in the same set of cellular proteins.


2001 ◽  
Vol 75 (19) ◽  
pp. 9526-9531 ◽  
Author(s):  
Theodora Hatziioannou ◽  
Stephen P. Goff

ABSTRACT A direct comparison demonstrates that Rous sarcoma virus is capable of infecting aphidicolin-arrested cells 10-fold more efficiently than murine leukemia virus but less efficiently than human immunodeficiency virus. The efficiency of infection of nondividing cells by the three viruses correlates with the respective ability of each viral DNA to enter the nucleus.


1999 ◽  
Vol 73 (3) ◽  
pp. 2045-2051 ◽  
Author(s):  
Robert P. Bennett ◽  
John W. Wills

ABSTRACT Rous sarcoma virus (RSV) and murine leukemia virus (MLV) are examples of distantly related retroviruses that normally do not encounter one another in nature. Their Gag proteins direct particle assembly at the plasma membrane but possess very little sequence similarity. As expected, coexpression of these two Gag proteins did not result in particles that contain both. However, when the N-terminal membrane-binding domain of each molecule was replaced with that of the Src oncoprotein, which is also targeted to the cytoplasmic face of the plasma membrane, efficient copackaging was observed in genetic complementation and coimmunoprecipitation assays. We hypothesize that the RSV and MLV Gag proteins normally use distinct locations on the plasma membrane for particle assembly but otherwise have assembly domains that are sufficiently similar in function (but not sequence) to allow heterologous interactions when these proteins are redirected to a common membrane location.


Virology ◽  
1974 ◽  
Vol 57 (1) ◽  
pp. 259-270 ◽  
Author(s):  
Ashley T. Haase ◽  
Axel C. Garapin ◽  
Anthony J. Faras ◽  
John M. Taylor ◽  
J.Michael Bishop

1984 ◽  
Vol 174 (2) ◽  
pp. 297-317 ◽  
Author(s):  
Angelika Gebhardt ◽  
J.Valerie Bosch ◽  
Andrew Ziemiecki ◽  
Robert R. Friis

Sign in / Sign up

Export Citation Format

Share Document