scholarly journals Role of calcium fluxes in the sustained phase of angiotensin II-mediated aldosterone secretion from adrenal glomerulosa cells.

1985 ◽  
Vol 260 (16) ◽  
pp. 9177-9184 ◽  
Author(s):  
I Kojima ◽  
K Kojima ◽  
H Rasmussen
Endocrinology ◽  
2010 ◽  
Vol 151 (5) ◽  
pp. 2162-2170 ◽  
Author(s):  
Haixia Qin ◽  
Michael A. Frohman ◽  
Wendy B. Bollag

In primary bovine adrenal glomerulosa cells, the signaling enzyme phospholipase D (PLD) is suggested to mediate priming, the enhancement of aldosterone secretion after pretreatment with and removal of angiotensin II (AngII), via the formation of persistently elevated diacylglycerol (DAG). To further explore PLD’s role in priming, glomerulosa cells were pretreated with an exogenous bacterial PLD. Using this approach, phosphatidic acid (PA) is generated on the outer, rather than the inner, leaflet of the plasma membrane. Although PA is not readily internalized, the PA is nonetheless rapidly hydrolyzed by cell-surface PA phosphatases to DAG, which efficiently flips to the inner leaflet and accesses the cell interior. Pretreatment with bacterial PLD resulted in priming upon subsequent AngII exposure, supporting a role of DAG in this process, because the increase in DAG persisted after exogenous PLD removal. To determine the PLD isoform mediating aldosterone secretion, and presumably priming, primary glomerulosa cells were infected with adenoviruses expressing GFP, PLD1, PLD2, or lipase-inactive mutants. Overexpressed PLD2 increased aldosterone secretion by approximately 3-fold over the GFP-infected control under basal conditions, with a significant enhancement to about 16-fold over the basal value upon AngII stimulation. PLD activity was also increased basally and upon stimulation with AngII. In contrast, PLD1 overexpression had little effect on aldosterone secretion, despite the fact that PLD activity was enhanced. In both cases, the lipase-inactive PLD mutants showed essentially no effect on PLD activity or aldosterone secretion. Our results suggest that PLD2 is the isoform that mediates aldosterone secretion and likely priming.


1981 ◽  
Vol 241 (1) ◽  
pp. E42-E46 ◽  
Author(s):  
E. L. Schiffrin ◽  
M. Lis ◽  
J. Gutkowska ◽  
J. Genest

The effects of Na+-K+-ATPase inhibition by ouabain and blockage of Ca2+ influx into the cell by verapamil and lanthanum on the response of isolated rat adrenal glomerulosa cells to angiotensin II, ACTH, and K+ were studied. Ouabain significantly increased basal aldosterone output at a concentration of 10(-5) mol/liter, whereas at 10(-3) mol/liter basal secretion was unaffected. Steroidogenic response to angiotensin II was significantly potentiated at concentrations of ouabain of 10(-5) mol/liter, but responses to angiotensin II, ACTH, and K+ were inhibited by 10(-4) and 10(-3) mol/liter of ouabain. The Ca2+ antagonist verapamil (10(-6) to 10(-4) mol/liter) decreased basal aldosterone secretion as well as the response to angiotensin II, ACTH, and K+. The effects of ouabain (10(-5) mol/liter) on basal and stimulated steroidogenesis were abolished by verapamil (10(-4) mol/liter). Lanthanum decreased basal and angiotensin II, ACTH, and K+ induced aldosterone secretion. The effects of ouabain (10(-5) mol/liter) on basal and stimulated aldosterone biosynthesis were blocked by lanthanum. These results suggest that Ca2+ mediates the effects of angiotensin II, ACTH, K+ and Na+-K+-ATPase inhibition on aldosterone biosynthesis. Ca2+ may be the final common intracellular messenger of most aldosterone secretagogues.


1995 ◽  
Vol 305 (2) ◽  
pp. 433-438 ◽  
Author(s):  
S Kapas ◽  
A Purbrick ◽  
J P Hinson

The role of protein kinases in the steroidogenic actions of alpha-melanocyte-stimulating hormone (alpha-MSH), angiotensin II (AngII) and corticotropin (ACTH) in the rat adrenal zona glomerulosa was examined. Ro31-8220, a potent selective inhibitor of protein kinase C (PKC), inhibited both AngII- and alpha-MSH-stimulated aldosterone secretion but had no effect on aldosterone secretion in response to ACTH. The effect of Ro31-8220 on PKC activity was measured in subcellular fractions. Basal PKC activity was higher in cytosol than in membrane or nuclear fractions. Incubation of the zona glomerulosa with either alpha-MSH or AngII resulted in significant increases in PKC activity in the nuclear and cytosolic fractions and decreases in the membrane fraction. These effects were all inhibited by Ro31-8220. ACTH caused a significant increase in nuclear PKC activity only, and this was inhibited by Ro31-8220 without any significant effect on the steroidogenic response to ACTH, suggesting that PKC translocation in response to ACTH may be involved in another aspect of adrenal cellular function. Tyrosine phosphorylation has not previously been considered to be an important component of the response of adrenocortical cells to peptide hormones. Both AngII and alpha-MSH were found to activate tyrosine kinase, but ACTH had no effect, observations that have not been previously reported. Tyrphostin 23, a specific antagonist of tyrosine kinases, inhibited aldosterone secretion in response to AngII and alpha-MSH, but not ACTH. These data confirm the importance of PKC in the adrenocortical response to AngII and alpha-MSH, and, furthermore, indicate that tyrosine kinase may play a critical role in the steroidogenic actions of AngII and alpha-MSH in the rat adrenal zona glomerulosa.


1994 ◽  
Vol 297 (3) ◽  
pp. 523-528 ◽  
Author(s):  
I Kojima ◽  
N Kawamura ◽  
H Shibata

The present study was conducted to monitor precisely the activity of protein kinase C (PKC) in adrenal glomerulosa cells stimulated by angiotensin II (ANG II). PKC activity in cells was monitored by measuring phosphorylation of a synthetic KRTLRR peptide, a specific substrate for PKC, immediately after the permeabilization of the cells with digitonin [Heasley and Johnson J. Biol. Chem. (1989) 264, 8646-8652]. Addition of 1 nM ANG II induced a gradual increase in KRTLRR peptide phosphorylation, which reached a peak at 30 min, and phosphorylation was sustained thereafter. When the action of ANG II was terminated by adding [Sar1,Ala8]ANG II, a competitive antagonist, both Ca2+ entry and KRTLRR phosphorylation ceased rapidly, whereas diacylglyercol (DAG) content was not changed significantly within 10 min. Similarly, when blockade of Ca2+ entry was achieved by decreasing extracellular Ca2+ to 1 microM or by adding 1 microM nitrendipine, KRTLRR peptide phosphorylation was decreased within 5 min. In addition, restoration of Ca2+ entry was accompanied by an immediate increase in KRTLRR peptide phosphorylation. Under the same condition, DAG content did not change significantly. We then examined the role of the PKC pathway in ANG II-induced aldosterone production. Ro 31-8220 inhibited ANG II-induced KRTLRR phosphorylation without affecting the activity of calmodulin-dependent protein kinase II. In the presence of Ro 31-8220, ANG II-mediated aldosterone production was decreased to approx. 50%. Likewise, intracellular administration of PKC19-36, a sequence corresponding to residues 19-36 of the regulatory domain of PKC known to inhibit PKC activity, attenuated ANG II-mediated activation of PKC and aldosterone output. These results indicate a critical role of Ca2+ entry in the regulation of PKC activity by ANG II.


2000 ◽  
Vol 166 (1) ◽  
pp. 183-194 ◽  
Author(s):  
RE Kramer ◽  
TV Robinson ◽  
EG Schneider ◽  
TG Smith

Disturbances in acid-base balance in vivo are associated with changes in plasma aldosterone concentration, and in vitro changes in extracellular pH (pH(o)) influence the secretion of aldosterone by adrenocortical tissue or glomerulosa cells. There is considerable disparity, however, as to the direction of the effect. Furthermore, the mechanisms by which pH(o) independently affects aldosterone secretion or interacts with other secretagogues are not defined. Thus, bovine glomerulosa cells maintained in primary monolayer culture were used to examine the direct effects of pH(o) on cytosolic free calcium concentration ([Ca(2+)](i))( )and aldosterone secretion under basal and angiotensin II (AngII)-stimulated conditions. pH(o) was varied from 7.0 to 7.8 (corresponding inversely to changes in extracellular H(+) concentration from 16 nM to 100 nM). Whereas an elevation of pH(o) from 7.4 to 7.8 had no consistent effect, reductions of pH(o) from 7.4 to 7.2 or 7.0 caused proportionate increases in aldosterone secretion that were accompanied by increases in transmembrane Ca(2+) fluxes and [Ca(2+)](i). These effects were abolished by removal of extracellular Ca(2+). A decrease in pH(o) from 7.4 to 7.0 also enhanced AngII-stimulated aldosterone secretion. This effect was more pronounced at low concentrations of AngII and was manifested as an increase in the magnitude of the secretory response with no effect on potency. In contrast to its effect on AngII-stimulated aldosterone secretion, a reduction of pH(o) from 7.4 to 7.0 inhibited the Ca(2+) signal elicited by low concentrations (</=1x10(-10) M) of AngII, but did not affect the increase in [Ca(2+)](i) caused by a maximal concentration (1x10(-8) M) of AngII. These data suggest that pH(o) (i.e. H(+)) has multiple effects on aldosterone secretion. It independently increases aldosterone secretion through a mechanism involving Ca(2+) influx and an increase in [Ca(2+)](i). Also, it modulates the action of AngII by both decreasing the magnitude of the AngII-stimulated Ca(2+) signal and increasing the sensitivity of a more distal site to intracellular Ca(2+). The latter action appears to be a more important determinant in the effects of pH(o) on AngII-stimulated aldosterone secretion.


Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 3284-3294 ◽  
Author(s):  
Pablo G. Mele ◽  
Alejandra Duarte ◽  
Cristina Paz ◽  
Alessandro Capponi ◽  
Ernesto J. Podestá

Although the role of arachidonic acid (AA) in angiotensin II (ANG II)- and potassium-stimulated steroid production in zona glomerulosa cells is well documented, the mechanism responsible for AA release is not fully described. In this study we evaluated the mechanism involved in the release of intramitochondrial AA and its role in the regulation of aldosterone synthesis by ANG II in glomerulosa cells. We show that ANG II and potassium induce the expression of acyl-coenzyme A (CoA) thioesterase 2 and acyl-CoA synthetase 4, two enzymes involved in intramitochondrial AA generation/export system well characterized in other steroidogenic systems. We demonstrate that mitochondrial ATP is required for AA generation/export system, steroid production, and steroidogenic acute regulatory protein induction. We also demonstrate the role of protein tyrosine phosphatases regulating acyl-CoA synthetase 4 and steroidogenic acute regulatory protein induction, and hence ANG II-stimulated aldosterone synthesis.


1994 ◽  
Vol 267 (5) ◽  
pp. C1246-C1252 ◽  
Author(s):  
T. Rohacs ◽  
A. Bago ◽  
F. Deak ◽  
L. Hunyady ◽  
A. Spat

We examined the effect of the depletion of intracellular Ca2+ stores on Ca2+ influx in rat glomerulosa cells. Depletion of intracellular Ca2+ stores was achieved by inhibiting sarco/endoplasmic reticulumtype Ca(2+)-ATPase with thapsigargin or 2,5,di-(t-butyl)-1,4-benzohydroquinone (t-BHQ). Both inhibitors induced a sustained rise in cytoplasmic Ca2+ concentration. The initial rise was observed also in Ca(2+)-free medium, while the sustained phase disappeared, indicating that the latter requires Ca2+ influx. In Ca(2+)-free medium, the readdition of Ca2+ induced a steeper and higher rise in intracellular Ca2+ concentration in thapsigargin-treated cells than in controls, supporting the role of Ca2+ influx. In normal medium, the addition of Cd2+ (80 microM) evoked an immediate inhibition of the sustained phase of thapsigargin response. The response to thapsigargin was insensitive to nifedipine. Thapsigargin failed to enhance Mn2+ quenching of fura 2. Our results provide evidence for the existence of capacitative Ca2+ influx in rat glomerulosa cells and indicate that dihydropyridine-sensitive Ca2+ channels do not participate in capacitative Ca2+ entry. High concentrations of thapsigargin and t-BHQ, similar to the reported effects of angiotensin II and vasopressin, inhibited K(+)-induced Ca2+ signals. These effects appear, however, to be independent of the depletion of internal Ca2+ stores.


Sign in / Sign up

Export Citation Format

Share Document