specific substrate
Recently Published Documents


TOTAL DOCUMENTS

570
(FIVE YEARS 132)

H-INDEX

59
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Ankan Bhadra ◽  
Michael Rau ◽  
Jil Daw ◽  
James Fitzpatrick ◽  
Conrad C. Weihl ◽  
...  

Abstract Molecular chaperones, or heat shock proteins (HSPs), protect against the toxic misfolding and aggregation of proteins. As such, mutations or deficiencies within the chaperone network can lead to disease. In fact, dominant mutations in DNAJB6 (Hsp40/Sis1), an Hsp70 co-chaperone, leads to a protein aggregate myopathy termed Limb-Girdle Muscular Dystrophy Type D1 (LGMDD1). DNAJB6 client proteins and co-chaperone interactions in skeletal muscle are not known. Here, we used the yeast prion model client in conjunction with in vitro chaperone activity assays to gain mechanistic insights, and found that LGMDD1 mutants affect Hsp40 functions. Strikingly, the mutants changed the structure of client protein aggregates, as determined by altered distribution of prion strains. They also impair the Hsp70 ATPase cycle, dimerization, and substrate processing and consequently poison the function of wild-type protein. These results define the mechanisms by which LGMDD1 mutations alter chaperone activity and provide avenues for therapeutic intervention.


2021 ◽  
Vol 9 (2) ◽  
pp. 21-24
Author(s):  
Ibrahim Alhaji Sabo ◽  
Salihu Yahuza ◽  
Mohd Yunus Shukor

In this work, kinetic growth models such as Luong, Yano, Teissier-Edward, Aiba, Haldane, Monod, Han and Levenspiel were used to model molybdenum blue production from Serratia sp. strain DRY5. Based on statistical analyses such as root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF), and accuracy factor (AF), the Monod model was chosen as the best. The calculated values for the monod constants qmax (the maximum specific substrate degradation rate (h−1), and Ks (concentration of substrate at the half maximal degradation rate (mg/L)) were found to be 3.86 (95% confidence interval of 2.29 to 5.43), and 43.41 (95% confidence interval of 12.36 to 74.46) respectively. The novel constants discovered during the modelling exercise could be used in further secondary modelling.


2021 ◽  
Vol 11 ◽  
Author(s):  
Miriam Grazia Ferrara ◽  
Alessio Stefani ◽  
Sara Pilotto ◽  
Carmine Carbone ◽  
Emanuele Vita ◽  
...  

Non-small cell lung cancer (NSCLC) represents the perfect paradigm of ‘precision medicine’ due to its complex intratumoral heterogeneity. It is truly characterized by a range of molecular alterations that can deeply influence the natural history of this disease. Several molecular alterations have been found over time, paving the road to biomarker-driven therapy and radically changing the prognosis of ‘oncogene addicted’ NSCLC patients. Kirsten rat sarcoma (KRAS) mutations are present in up to 30% of NSCLC (especially in adenocarcinoma histotype) and have been identified decades ago. Since its discovery, its molecular characteristics and its marked affinity to a specific substrate have led to define KRAS as an undruggable alteration. Despite that, many attempts have been made to develop drugs capable of targeting KRAS signaling but, until a few years ago, these efforts have been unsuccessful. Comprehensive genomic profiling and wide-spectrum analysis of genetic alterations have only recently allowed to identify different types of KRAS mutations. This tricky step has finally opened new frontiers in the treatment approach of KRAS-mutant patients and might hopefully increase their prognosis and quality of life. In this review, we aim to highlight the most interesting aspects of (epi)genetic KRAS features, hoping to light the way to the state of art of targeting KRAS in NSCLC.


2021 ◽  
Author(s):  
Ankan K. Bhadra ◽  
Michael J. Rau ◽  
Jil A. Daw ◽  
James A.J. Fitzpatrick ◽  
Conrad C. Weihl ◽  
...  

Molecular chaperones, or heat shock proteins (HSPs), protect against the toxic misfolding and aggregation of proteins. As such, mutations or deficiencies within the chaperone network can lead to disease. In fact, dominant mutations in DNAJB6 (Hsp40/Sis1), an Hsp70 co-chaperone, leads to a protein aggregate myopathy termed Limb-Girdle Muscular Dystrophy Type D1 (LGMDD1). DNAJB6 client proteins and co-chaperone interactions in skeletal muscle are not known. Here, we used the yeast prion model client in conjunction with in vitro chaperone activity assays to gain mechanistic insights, and found that LGMDD1 mutants affect Hsp40 functions. Strikingly, the mutants changed the structure of client protein aggregates, as determined by altered distribution of prion strains. They also impair the Hsp70 ATPase cycle, dimerization, and substrate processing and consequently poison the function of wild-type protein. These results define the mechanisms by which LGMDD1 mutations alter chaperone activity and provide avenues for therapeutic intervention.


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 591
Author(s):  
Tina Smrke ◽  
Robert Veberic ◽  
Metka Hudina ◽  
Vid Zitko ◽  
Mitja Ferlan ◽  
...  

Due to the increasing interest in highbush blueberry (Vaccinium corymbosum L.) among consumers, together with the problems of climate change and specific substrate requirements, a novel approach to intensive blueberry production is required. Here, ‘Duke’, ‘Aurora’, and ‘Brigitta’ blueberry cultivars were planted under the protective environments of a high tunnel and black hail net, each using ridge and pot planting systems. The high tunnel increased the maximal air temperature on average by 7.2 °C compared to the hail net. For all three cultivars, harvest began 6 to 18 days earlier under the high tunnel than under the hail net; however, lower yields and individual phenolics contents were obtained for the fruit. In ‘Aurora’ and ‘Brigitta’, environmental conditions under the high tunnel also reduced plant volume and fruit sugar/organic acid ratio. Growing blueberry plants in 60 L pots had no negative effects on plant volume and fruit ripening time, yield, firmness, color, and chemical composition. This study represents the first to compare highbush blueberry grown under the high tunnel and hail net protective environments using ridge and pot planting systems across three different cultivars. Here, we can conclude that optimal highbush blueberry production of ‘Duke’, ‘Aurora’, and ‘Brigitta’ under the climate conditions of the study provides earlier ripening times under the high tunnel. However, according to fruit yield and quality, all three cultivars benefit from the hail net over the high tunnel, while ‘Duke’ and ‘Brigitta’ also benefit in particular from the hail net combined with growth in pots.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 984
Author(s):  
Danxia Wu ◽  
Muhammad Saleem ◽  
Tengbing He ◽  
Guandi He

Heavy metal stress (HMS) is one of the most destructive abiotic stresses which seriously affects the growth and development of plants. Recent studies have shown significant progress in understanding the molecular mechanisms underlying plant tolerance to HMS. In general, three core signals are involved in plants’ responses to HMS; these are mitogen-activated protein kinase (MAPK), calcium, and hormonal (abscisic acid) signals. In addition to these signal components, other regulatory factors, such as microRNAs and membrane proteins, also play an important role in regulating HMS responses in plants. Membrane proteins interact with the highly complex and heterogeneous lipids in the plant cell environment. The function of membrane proteins is affected by the interactions between lipids and lipid-membrane proteins. Our review findings also indicate the possibility of membrane protein-lipid-metal ion interactions in regulating metal homeostasis in plant cells. In this review, we investigated the role of membrane proteins with specific substrate recognition in regulating cell metal homeostasis. The understanding of the possible interaction networks and upstream and downstream pathways is developed. In addition, possible interactions between membrane proteins, metal ions, and lipids are discussed to provide new ideas for studying metal homeostasis in plant cells.


2021 ◽  
Author(s):  
Soumaya Belhadj ◽  
Nina Hermann ◽  
Gustav Christensen ◽  
Torsten Strasser ◽  
François Paquet-Durand

AbstractCalpains are a family of calcium-activated proteases involved in numerous disorders. Notably, previous studies have shown that calpain activity was substantially increased in various models for inherited retinal degeneration (RD). In the present study, we tested the capacity of the t-BOC-Leu-Met-CMAC calpain-specific substrate to detect calpain activity in living retina, in organotypic retinal explant cultures derived from wild-type mice, as well as from rd1 and RhoP23H/+ RD-mutant mice. Test conditions were refined until the calpain substrate readily detected large numbers of cells in the photoreceptor layer of RD retina but not in wild-type retina. At the same time, the calpain substrate was not obviously toxic to photoreceptor cells. Comparison of calpain activity with an immunostaining for activated calpain-2 furthermore suggested that individual calpain isoforms may be active in distinct temporal stages of photoreceptor cell death. Notably, calpain-2 activity may be a relatively short-lived event, occurring only towards the end of the cell death process. Finally, our results support the development of calpain activity detection as a novel in vivo biomarker for RD, suitable for combination with non-invasive imaging techniques.


2021 ◽  
Vol 21 (3) ◽  
pp. 49-62
Author(s):  
Daria V. Grigorieva ◽  
Irina V. Gorudko ◽  
Ekaterina N. Grafskaia ◽  
Ivan A. Latsis ◽  
Alexey V. Sokolov ◽  
...  

BACKGROUND: Resistance of microorganisms caused dangerous to human health infections to traditional antibiotics is a serious problem for healthcare. In this regard, the development of new effective antimicrobial drugs and therapeutic approaches is an urgent task. Antimicrobial peptides (AMPs) are considered a promising alternative to traditional antibiotic in the fight against resistant microorganisms. AIM: The aim of this work is to study the effect of new synthesized AMPs of the medicinal leech Hirudo medicinalis (including under conditions of development of oxidative/halogenative stress) on the functional activity of neutrophils granular proteins the main effector cells of the immune system. MATERIALS AND METHODS: Myeloperoxidase peroxidase activity was assessed by the rate of o-dianisidine oxidation. Neutrophil elastase activity was determined by the fluorescence method using a specific substrate MeOSuc-AAPV-AMC. Lactoferrin iron-binding activity was assessed spectrophotometrically by the change in absorption of protein solution after addition of Fe3+ salt. Lysozyme activity was determined by the rate of M. lysodeikticus bacterial cells lysis. RESULTS: Native AMPs 536_1 and 19347_2 inhibited and 12530 increased myeloperoxidase peroxidase activity, this tendency persisted after these AMPs modification by hypochlorous acid (HOCl). In contrast to the native AMP halogenated AMP 3967_1 acquired the ability to enhance myeloperoxidase enzymatic activity. In the presence of AMP 3967_1 neutrophil elastase amidolytic activity increased insignificantly, while AMP 19347_2 inhibited neutrophil elastase activity. After HOCl modification these AMPs retained their ability to regulate neutrophil elastase activity. Synergistic effects (~20%) against gram-positive bacteria M. lysodeikticus were revealed for combination of lysozyme with AMPs 12530 and 3967_1. Inhibition lysozyme antimicrobial activity was observed in the presence of AMPs 19347_2 and 536_1, however the severity of this effect decreased after AMPs modification by HOCl. After HOCl modification AMP 3967_1 increased, while AMP 12530 on the contrary acquired the ability to inhibit lysozyme mucolytic activity. CONCLUSIONS: The use of drugs based on studied AMPs of medicinal leech will have a beneficial effect on the bodys fight against infectious agents due to the antimicrobial action of AMPs themselves. But in addition studied AMPs are capable to modulate the biological activity of own endogenous antimicrobial proteins and peptides: to enhance it, if it is necessary to eliminate pathogen and to inhibit if it necessary to protect against damage to the bodys own tissues.


2021 ◽  
Vol 12 ◽  
Author(s):  
MengLin Chen ◽  
Min Chen ◽  
Danyi Lu ◽  
Yi Wang ◽  
Li Zhang ◽  
...  

CYP2B10 is responsible for metabolism and detoxification of many clinical drugs. Here, we aimed to investigate a potential role of Period 2 (PER2) in regulating expression of hepatic CYP2B10. Regulatory effects of PER2 on hepatic expression of CYP2B10 and other enzymes were determined using Per2-deficient mice with exons 4-6 deleted (named Per2Del4-6 mice). In vitro and in vivo metabolic activities of CYP2B10 were probed using cyclophosphamide (CPA) as a specific substrate. Regulatory mechanism was investigated using luciferase reporter assays. Genotyping and Western blotting demonstrated loss of wild-type Per2 transcript and markedly reduced PER2 protein in Per2Del4-6 mice. Hepatic expression of a plenty of drug-metabolizing genes (including Cyp2a4/2a5, Cyp2b10, Ugt1a1, Ugt1a9, Ugt2b36, Sult1a1 and Sult1e1) were altered (and majority were down-regulated) in Per2Del4-6 mice. Of note, Cyp2b10, Ugt1a9 and Sult1a1 were three genes considerably affected with reduced expression. Decreased expression of CYP2B10 was translated to reduced metabolism and altered pharmacokinetics of CPA as well as attenuated CPA hepatotoxicity in Per2Del4-6 mice. Positive regulation of CYP2B10 by PER2 was further confirmed in both Hepa-1c1c7 and AML-12 cells. Based on luciferase reporter assays, it was shown that PER2 regulated Cyp2b10 transcription in a REV-ERBα-dependent manner. REV-ERBα was negatively regulated by PER2 (increased REV-ERBα expression in Per2Del4-6 mice) and itself was also a repressor of CYP2B10. In conclusion, PER2 positively regulates CYP2B10 expression and activity in mouse liver through inhibiting its repressor REV-ERBα.


2021 ◽  
Author(s):  
Brijesh Kumar Verma ◽  
Aritra Chatterjee ◽  
Paturu Kondaiah ◽  
Namrata Gundiah

Biomaterials, like polydimethylsiloxane (PDMS), are soft, biocompatible, and tuneable, which makes them useful to delineate specific substrate factors that regulate the complex landscape of cell-substrate interactions. We used a commercial formulation of PDMS to fabricate substrates with moduli 40 kPa, 300 kPa, and 1.5 MPa, and cultured HMF3S fibroblasts on them. Gene expression analysis was performed by RT-PCR and Western blotting. Cellular and nuclear morphologies were analyzed using confocal imaging, and MMP-2 and MMP-9 activities were determined with gelatin zymography. Results, comparing mechanotransduction on PDMS substrates with control petridishes, show that substrate stiffness modulates cell morphologies and proliferations. Cell nuclei were rounded on compliant substrates and correlated with increased tubulin expression. Proliferations were higher on stiffer substrates with cell cycle arrest on softer substrates. Integrin alpha5 expression decreased on lower stiffness substrates, and correlated with inefficient TGF-beta; activation. Changes to the activated state of the fibroblast on higher stiffness substrates were linked to altered TGF-beta; secretion. Collagen I, collagen III, and MMP-2 expression levels were lower on compliant PDMS substrates as compared to stiffer ones; there was little MMP-9 activity on substrates. These results demonstrate critical feedback mechanisms between substrate stiffness and ECM regulation by fibroblasts which is highly relevant in diseases like tissue fibrosis.


Sign in / Sign up

Export Citation Format

Share Document