scholarly journals Beta-lapachone, a specific competitive inhibitor of ligand binding to the glucocorticoid receptor.

1984 ◽  
Vol 259 (15) ◽  
pp. 9536-9543
Author(s):  
T J Schmidt ◽  
A Miller-Diener ◽  
G Litwack
2012 ◽  
Vol 288 (6) ◽  
pp. 4424-4435 ◽  
Author(s):  
Robert Dagil ◽  
Charlotte O'Shea ◽  
Anders Nykjær ◽  
Alexandre M. J. J. Bonvin ◽  
Birthe B. Kragelund

2018 ◽  
Vol 115 (46) ◽  
pp. 11688-11693 ◽  
Author(s):  
Thomas Suren ◽  
Daniel Rutz ◽  
Patrick Mößmer ◽  
Ulrich Merkel ◽  
Johannes Buchner ◽  
...  

The glucocorticoid receptor (GR) is a prominent nuclear receptor linked to a variety of diseases and an important drug target. Binding of hormone to its ligand binding domain (GR-LBD) is the key activation step to induce signaling. This process is tightly regulated by the molecular chaperones Hsp70 and Hsp90 in vivo. Despite its importance, little is known about GR-LBD folding, the ligand binding pathway, or the requirement for chaperone regulation. In this study, we have used single-molecule force spectroscopy by optical tweezers to unravel the dynamics of the complete pathway of folding and hormone binding of GR-LBD. We identified a “lid” structure whose opening and closing is tightly coupled to hormone binding. This lid is located at the N terminus without direct contacts to the hormone. Under mechanical load, apo-GR-LBD folds stably and readily without the need of chaperones with a folding free energy of 41 kBT (24 kcal/mol). The folding pathway is largely independent of the presence of hormone. Hormone binds only in the last step and lid closure adds an additional 12 kBT of free energy, drastically increasing the affinity. However, mechanical double-jump experiments reveal that, at zero force, GR-LBD folding is severely hampered by misfolding, slowing it to less than 1·s−1. From the force dependence of the folding rates, we conclude that the misfolding occurs late in the folding pathway. These features are important cornerstones for understanding GR activation and its tight regulation by chaperones.


Development ◽  
2000 ◽  
Vol 127 (4) ◽  
pp. 791-800 ◽  
Author(s):  
M. Kishi ◽  
K. Mizuseki ◽  
N. Sasai ◽  
H. Yamazaki ◽  
K. Shiota ◽  
...  

From early stages of development, Sox2-class transcription factors (Sox1, Sox2 and Sox3) are expressed in neural tissues and sensory epithelia. In this report, we show that Sox2 function is required for neural differentiation of early Xenopus ectoderm. Microinjection of dominant-negative forms of Sox2 (dnSox2) mRNA inhibits neural differentiation of animal caps caused by attenuation of BMP signals. Expression of dnSox2 in developing embryos suppresses expression of N-CAM and regional neural markers. We have analyzed temporal requirement of Sox2-mediated signaling by using an inducible dnSox2 construct fused to the ligand-binding domain of the glucocorticoid receptor. Attenuation of Sox2 function both from the late blastula stage and from the late gastrula stage onwards causes an inhibition of neural differentiation in animal caps and in whole embryos. Additionally, dnSox2-injected cells that fail to differentiate into neural tissues are not able to adopt epidermal cell fate. These data suggest that Sox2-class genes are essential for early neuroectoderm cells to consolidate their neural identity during secondary steps of neural differentiation.


Sign in / Sign up

Export Citation Format

Share Document