scholarly journals Two large clusters with thirty-seven transfer RNA genes adjacent to ribosomal RNA gene sets in Bacillus subtilis. Sequence and organization of trrnD and trrnE gene clusters.

1984 ◽  
Vol 259 (6) ◽  
pp. 3694-3702 ◽  
Author(s):  
E F Wawrousek ◽  
N Narasimhan ◽  
J N Hansen
1992 ◽  
Vol 21 (4-5) ◽  
pp. 417-422 ◽  
Author(s):  
Charles F. Wimpee ◽  
Rodney Morgan ◽  
Russell L. Wrobel

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
J. Antonio Baeza ◽  
Fabiola A. Sepúlveda ◽  
M. Teresa González

Abstract Background The monogenean Benedenia seriolae parasitizes fishes belonging to the genus Seriola, represents a species complex, and causes substantial impact on fish welfare in aquaculture systems worldwide. This study reports, for the first time, the complete mitochondrial genome of B. humboldti n. sp., a new cryptic species from the South-East Pacific (SEP). Methods The mitogenome of B. humboldti n. sp. was assembled from short Illumina 150 bp pair-end reads. The phylogenetic position of B. humboldti n. sp. among other closely related congeneric and confamiliar capsalids was examined using mitochondrial protein-coding genes (PCGs). Morphology of B. humboldti n. sp. was examined based on fixed and stained specimens. Results The AT-rich mitochondrial genome of B. humboldti is 13,455 bp in length and comprises 12 PCGs (atp8 was absent as in other monogenean genomes), 2 ribosomal RNA genes, and 22 transfer RNA genes. All protein-coding, ribosomal RNA, and transfer RNA genes are encoded on the H-strand. The gene order observed in the mitochondrial genome of B. humboldti n. sp. was identical to that of B. seriolae from Japan but different from that of B. seriolae from Australia. The genetic distance between B. humboldti n. sp. and B. seriolae from Japan was high. Minor but reliable differences in the shape of the penis were observed between Benedenia humboldti n. sp. and congeneric species. Conclusions Phylogenetic analyses based on PCGs in association with differences in the shape of the penis permitted us to conclude that the material from the South-East Pacific represents a new species of Benedenia infecting S. lalandi off the coast of Chile. The discovery of this parasite represents the first step to improving our understanding of infestation dynamics and to develop control strategies for this pathogen infecting the farmed yellowtail kingfish, Seriola lalandi, in the South-East Pacific.


1992 ◽  
Vol 3 (3) ◽  
pp. 173-178 ◽  
Author(s):  
Kazuhiko Kawasaki ◽  
Shinsei Minoshima ◽  
Jun Kudoh ◽  
Ryuichi Fukuyama ◽  
Nobuyoshi Shimizu

2007 ◽  
Vol 18 (1) ◽  
pp. 13-18 ◽  
Author(s):  
D. M. Stults ◽  
M. W. Killen ◽  
H. H. Pierce ◽  
A. J. Pierce

1981 ◽  
Vol 1 (11) ◽  
pp. 972-982 ◽  
Author(s):  
D J Cummings ◽  
J L Laping

Previously we showed that the mitochondrial deoxyribonucleic acid (DNA) from Paramecium aurelia consists of a linear genome and that replication of this genome is initiated at one terminus and proceeds unidirectionally to the other terminus. Analyses of mitochondria from four closely related species (1, 4, 5, and 7) indicated that the species 1, 5, and 7 DNAs are essentially completely homologous but that the species 4 mitochondrial DNA is only 40 to 50% homologous with that from species 1. The major regions of homology are those containing the genes for ribosomal ribonucleic acid (RNA). To understand the replication and organization of the linear mitochondrial genome better, we compared species 1 (Paramecium primaurelia) and 4 (Paramecium tetraaurelia) DNAs with regard to restriction fragment mapping and homology between initiation regions; we also identified the sites of the genes for ribosomal RNA. In general, the structures of the species 1 and 4 mitochondrial genomes were quite similar. Each ribosomal RNA gene was present in one copy per genome, with the large ribosomal RNA gene located near the terminal region of replication and the small ribosomal RNA gene located more centrally. These two genes were separated by about 10 kilobases in the species 1 genome and by about 12 kilobases in the species 4 genome. In contrast to our previous findings, by using nonstringent hybridization conditions we detected homology between the species 1 and 4 DNA fragments containing the initiation regions. We constructed recombinant DNA clones for many fragments, especially those containing the initiation region and the ribosomal RNA genes. We also constructed restriction enzyme maps for six enzymes for both P. primaurelia and P. tetraaurelia.


Sign in / Sign up

Export Citation Format

Share Document