scholarly journals Anion transport activity in the human erythrocyte membrane modulated by proteolytic digestion of the 38,000-dalton fragment in Band 3.

1983 ◽  
Vol 258 (24) ◽  
pp. 15376-15381 ◽  
Author(s):  
H Matsuyama ◽  
Y Kawano ◽  
N Hamasaki
1998 ◽  
Vol 18 (5) ◽  
pp. 265-277
Author(s):  
Hong Xu ◽  
Xujia Zhang ◽  
Fu Yu Yang

Human erythrocyte band 3 is purified and reconstituted into vesicles, forming right-side-out proteoliposomes. Zn2+ entrapped inside the proteoliposomes inhibits the anion transport activity of band 3, and removal of the cytoplasmic domain of band 3 is able to diminish Zn2+ inhibition. Thus, the inhibition of activity of band 3 results from the Zn2+ induced conformational change of the cytoplasmic domain, which in turn is transmitted to the membrane domain. The results of intrinsic fluorescence and its quenching by HB and the 35Cl NMR study indicate that the cytoplasmic domain is essential for the conformational change induced by Zn2+.SH-blocking reagents, CH3I and GSSG, are used to modify the cytoplasmic domain, where they specifically bind to Cys201 and Cys317. It is observed that the Zn2+ induced inhibition of anion transport activity is blocked. This demonstrates that Cys201 and Cys317 are required in Zn2+-mediated domain–domain communication.


1994 ◽  
Vol 14 (4) ◽  
pp. 159-169 ◽  
Author(s):  
Y. P. Tu ◽  
H. Xu

Zn2+ can induce a conformational change of Band 3 with concomitant inhibition of its anion transport activity of human erythrocyte membrane vesicles only from the cytoplasmic side. The Zn2+ inhibition exhibits a dose-dependent manner with an apparent half maximal concentration of 50 μM ZnCl2 and can be reversed by 0.5 mM EDTA, but not by 1 mM dithiothreitol. The Zn2+ effect is specific and no similar inhibitory action could be observed by other divalent cations (Cu2+, Mn2+, Mg2+ or Sr2+).


1981 ◽  
Vol 256 (21) ◽  
pp. 11203-11208 ◽  
Author(s):  
S.N. Murthy ◽  
T. Liu ◽  
R.K. Kaul ◽  
H. Köhler ◽  
T.L. Steck

Sign in / Sign up

Export Citation Format

Share Document