scholarly journals S1 nuclease mapping analysis of ribosomal RNA processing in wild type and processing deficient Escherichia coli.

1983 ◽  
Vol 258 (19) ◽  
pp. 12034-12042
Author(s):  
T C King ◽  
D Schlessinger
2002 ◽  
Vol 46 (11) ◽  
pp. 3386-3393 ◽  
Author(s):  
Patricia Sánchez ◽  
Ana Alonso ◽  
Jose L. Martinez

ABSTRACT We report on the cloning of the gene smeT, which encodes the transcriptional regulator of the Stenotrophomonas maltophilia efflux pump SmeDEF. SmeT belongs to the TetR and AcrR family of transcriptional regulators. The smeT gene is located upstream from the structural operon of the pump genes smeDEF and is divergently transcribed from those genes. Experiments with S. maltophilia and the heterologous host Escherichia coli have demonstrated that SmeT is a transcriptional repressor. S1 nuclease mapping has demonstrated that expression of smeT is driven by a single promoter lying close to the 5′ end of the gene and that expression of smeDEF is driven by an unique promoter that overlaps with promoter PsmeT. The level of expression of smeT is higher in smeDEF-overproducing S. maltophilia strain D457R, which suggests that SmeT represses its own expression. Band-shifting assays have shown that wild-type strain S. maltophilia D457 contains a cellular factor(s) capable of binding to the intergenic smeT-smeD region. That cellular factor(s) was absent from smeDEF-overproducing S. maltophilia strain D457R. The sequence of smeT from D457R showed a point mutation that led to a Leu166Gln change within the SmeT protein. This change allowed overexpression of both smeDEF and smeT in D457R. It was noteworthy that expression of wild-type SmeT did not fully complement the smeT mutation in D457R. This suggests that the wild-type protein is not dominant over the mutant SmeT.


1989 ◽  
Vol 9 (12) ◽  
pp. 5340-5349
Author(s):  
H Miller ◽  
C Asselin ◽  
D Dufort ◽  
J Q Yang ◽  
K Gupta ◽  
...  

A block to elongation of transcription has been shown to occur within the first exon of the human and murine c-myc genes. The extent of this block was found to vary with the physiological state of cells, indicating that modulation of the transcriptional block can serve to control the expression of this gene. To determine which sequences are required in cis for the transcriptional block, we generated a series of constructs containing various portions of murine c-myc 5'-flanking and exon 1 sequences. We established populations of HeLa and CV-1 cells stably transfected with these constructs. The transcription start sites were determined by S1 nuclease mapping analysis, and the extent of transcriptional block was measured by nuclear run-on transcription assays. Our results demonstrate that at least two cis-acting elements are necessary for the transcriptional block. A 3' element was found to be located in the region where transcription stopped and showed features reminiscent of some termination sites found in procaryotes. A 5' element was positioned between the P1 and P2 (C. Asselin, A. Nepveu, and K. B. Marcu, Oncogene 4:549-558, 1989). Removal of the more 3' binding site abolished the transcriptional block.


1988 ◽  
Vol 16 (22) ◽  
pp. 10803-10816 ◽  
Author(s):  
J. F. Sands ◽  
P. Regnier ◽  
H. S. Cummings ◽  
M. Grunberg-Manago ◽  
J. W.B. Hershey

1989 ◽  
Vol 9 (12) ◽  
pp. 5340-5349 ◽  
Author(s):  
H Miller ◽  
C Asselin ◽  
D Dufort ◽  
J Q Yang ◽  
K Gupta ◽  
...  

A block to elongation of transcription has been shown to occur within the first exon of the human and murine c-myc genes. The extent of this block was found to vary with the physiological state of cells, indicating that modulation of the transcriptional block can serve to control the expression of this gene. To determine which sequences are required in cis for the transcriptional block, we generated a series of constructs containing various portions of murine c-myc 5'-flanking and exon 1 sequences. We established populations of HeLa and CV-1 cells stably transfected with these constructs. The transcription start sites were determined by S1 nuclease mapping analysis, and the extent of transcriptional block was measured by nuclear run-on transcription assays. Our results demonstrate that at least two cis-acting elements are necessary for the transcriptional block. A 3' element was found to be located in the region where transcription stopped and showed features reminiscent of some termination sites found in procaryotes. A 5' element was positioned between the P1 and P2 (C. Asselin, A. Nepveu, and K. B. Marcu, Oncogene 4:549-558, 1989). Removal of the more 3' binding site abolished the transcriptional block.


1986 ◽  
Vol 14 (5) ◽  
pp. 811-813
Author(s):  
DAVID SCHLESSINGER ◽  
J. ROBERT THOMAS ◽  
MALGORZATA KRYCH ◽  
RAVI SIRDESHMUKH ◽  
RANDALL D. LITTLE

1989 ◽  
Vol 138 (1) ◽  
pp. 205-207 ◽  
Author(s):  
Susan H. Lawler ◽  
Robert W. Jones ◽  
Brian P. Eliceiri ◽  
George L. Eliceiri

1983 ◽  
Vol 3 (8) ◽  
pp. 1501-1510 ◽  
Author(s):  
L H Bowman ◽  
W E Goldman ◽  
G I Goldberg ◽  
M B Hebert ◽  
D Schlessinger

The locations of three cleavages that can occur in mouse 45S pre-rRNA were determined by Northern blot hybridization and S1 nuclease mapping techniques. These experiments indicate that an initial cleavage of 45S pre-rRNA can directly generate the mature 5' terminus of 18S rRNA. Initial cleavage of 45S pre-rRNA can also generate the mature 5' terminus of 5.8S rRNA, but in this case cleavage can occur at two different locations, one at the known 5' terminus of 5.8S rRNA and another 6 or 7 nucleotides upstream. This pattern of cleavage results in the formation of cytoplasmic 5.8S rRNA with heterogeneous 5' termini. Further, our results indicate that one pathway for the formation of the mature 5' terminus of 28S rRNA involves initial cleavages within spacer sequences followed by cleavages which generate the mature 5' terminus of 28S rRNA. Comparison of these different patterns of cleavage for mouse pre-rRNA with that for Escherichia coli pre-rRNA implies that there are fundamental differences in the two processing mechanisms. Further, several possible cleavage signals have been identified by comparing the cleavage sites with the primary and secondary structure of mouse rRNA (see W. E. Goldman, G. Goldberg, L. H. Bowman, D. Steinmetz, and D. Schlessinger, Mol. Cell. Biol. 3:1488-1500, 1983).


Sign in / Sign up

Export Citation Format

Share Document