scholarly journals Nitrogenase MoFe protein subunits from Klebsiella pneumoniae expressed in foreign hosts. Characteristics and interactions.

1987 ◽  
Vol 262 (18) ◽  
pp. 8814-8820 ◽  
Author(s):  
D Holland ◽  
A Zilberstein ◽  
D Govezensky ◽  
D Salomon ◽  
A Zamir
1993 ◽  
Vol 51 (1-2) ◽  
pp. 348
Author(s):  
B.E. Smith ◽  
M. Buck ◽  
K.Y. Faridoon ◽  
C.A. Gormal ◽  
B.D. Howes ◽  
...  

1993 ◽  
Vol 51 (1-2) ◽  
pp. 357
Author(s):  
B.E. Smith ◽  
M. Buck ◽  
K.Y. Faridoon ◽  
C.A. Gormal ◽  
B.D. Howes ◽  
...  

The enzyme responsible for N 2 fixation, nitrogenase, is only found in prokaryotes. It consists of two metalloproteins, both irreversibly destroyed by exposure to the O 2 of air. The MoFe-protein binds N 2 and the Fe-protein, after activation by MgATP, supplies electrons. H 2 is evolved during the reduction of N 2 to NH 3 and can become the sole reaction in the absence of N 2 ; valuable information has been obtained by exploiting the ability of nitrogenase to reduce substrates such as acetylene, azides and cyanides. Substrate quantities of MgATP are required for all such reactions. The sensitivity of nitrogenase to oxygen is an important physiological constraint on its use and distribution; the ATP requirement and metal contents are less serious constraints. O 2 and NH 3 regulate synthesis and sometimes function of nitrogenase. Nitrogen fixation by Klebsiella pneumoniae is genetically encoded by 17 genes (the nif genes) in a cluster of seven or eight operons. The functions of several of these genes are known and the outlines of their regulation can be discerned. The nif cluster can be transferred to new prokaryotic genera, sometimes yielding new diazotrophic strains or species; they have been transferred to yeast and are silent. They have been cloned and alien DNA ( lac ) has been fused into nif Transfer of expressible nif to new genetic backgrounds has probably occurred in Nature and may be exploitable for agriculture.


1984 ◽  
Vol 217 (1) ◽  
pp. 317-321 ◽  
Author(s):  
T R Hawkes ◽  
P A McLean ◽  
B E Smith

When the iron-molybdenum cofactor (FeMoco) was extracted from the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae and combined with the FeMoco-deficient MoFe protein from a nifB mutant, the resultant MoFe protein exhibited the NifV phenotype, i.e. in combination with wild-type Fe protein it exhibited poor N2-fixation activity and its H2-evolution activity was inhibited by CO. These data provide strong evidence that FeMoco contains the active site of nitrogenase. The metal contents and e.p.r. properties of FeMoco from wild-type and nifV mutants of K. pneumoniae are very similar.


1993 ◽  
Vol 292 (1) ◽  
pp. 93-98 ◽  
Author(s):  
D J Lowe ◽  
K Fisher ◽  
R N F Thorneley

The pre-steady-state absorbance changes that occur during the first 0.6 s of reaction of the nitrogenase of Klebsiella pneumoniae can be simulated by associating redox changes with the different states of the MoFe protein described by our published kinetic model for nitrogenase [Lowe and Thorneley (1984) Biochem. J. 224, 877-886]. When the substrate is changed, from H+ to C2H2 (acetylene) or N2, or the nitrogenase component protein ratio is altered, these pre-steady-state absorbance changes are affected in a manner that is quantitatively predicted by our model. The results, together with parallel e.p.r. studies, are interpreted as showing that the P-clusters become oxidized when the MoFe protein is in the state where bound N2 is irreversibly committed to being reduced and is protonated to the hydrazido(2-) level.


1983 ◽  
Vol 211 (2) ◽  
pp. 495-497 ◽  
Author(s):  
T R Hawkes ◽  
D J Lowe ◽  
B E Smith

During turnover at 10 degrees C at pH 7.4 in the presence of ethylene, the MoFe protein of Klebsiella pneumoniae nitrogenase (Kp 1) exhibited an electron-paramagnetic-resonance signal with g-values at 2.12, 1.998 and 1.987. 57Fe isotopic substitution demonstrated that this signal arose from the Kp 1 FeMo-cofactor in an S = 1/2 spin state.


1984 ◽  
Vol 224 (3) ◽  
pp. 877-886 ◽  
Author(s):  
D J Lowe ◽  
R N Thorneley

A comprehensive model for the mechanism of nitrogenase action is used to simulate pre-steady-state kinetic data for H2 evolution in the presence and in the absence of N2, obtained by using a rapid-quench technique with nitrogenase from Klebsiella pneumoniae. These simulations use independently determined rate constants that define the model in terms of the following partial reactions: component protein association and dissociation, electron transfer from Fe protein to MoFe protein coupled to the hydrolysis of MgATP, reduction of oxidized Fe protein by Na2S2O4, reversible N2 binding by H2 displacement and H2 evolution. Two rate-limiting dissociations of oxidized Fe protein from reduced MoFe protein precede H2 evolution, which occurs from the free MoFe protein. Thus Fe protein suppresses H2 evolution by binding to the MoFe protein. This is a necessary condition for efficient N2 binding to reduced MoFe protein.


1997 ◽  
Vol 53 (2) ◽  
pp. 227-228 ◽  
Author(s):  
S. M. Roe ◽  
C. Gormal ◽  
B. E. Smith ◽  
P. Baker ◽  
D. Rice ◽  
...  

1991 ◽  
Vol 277 (3) ◽  
pp. 735-741 ◽  
Author(s):  
R N F Thorneley ◽  
G A Ashby ◽  
C Julius ◽  
J L Hunter ◽  
M R Webb

The steady-state kinetics of reductant-independent ATP hydrolysis by Klebsiella pneumoniae nitrogenase at 23 degrees C at pH 7.4 were determined as a function of component protein ratio (optimal at an oxidized Fe protein/MoFe protein ratio of 3:1) and MgATP concentration (Km 400 microM). Competitive inhibition was observed for MgADP (Ki 145 microM), [beta gamma-methylene]ATP (Mgp[CH2]ppA) (Ki 115 microM), [beta gamma-monofluoromethylene]ATP (Mgp[CHF]ppA) (Ki 53 microM) and [beta gamma-difluoromethylene]ATP (Mgp[CF2]ppA) (Ki 160 microM). The tighter binding of MgADP to free oxidized Fe protein (KD less than 10 microM) than to the oxidized Fe protein-MoFe protein complex (Ki 145 microM) is proposed as the driving force that induces rate-limiting protein dissociation in the catalytic cycle of nitrogenase. The reversible nature of the reductant-independent MgATP-cleavage reaction was demonstrated by an MgADP-induced enhancement of the rate of the phosphate/water oxygen exchange reaction with 18O-labelled phosphate ion. This enhancement, like the reductant-independent ATPase reaction, only occurred with the complex formed by oxidized Fe protein and MoFe protein and not with the individual proteins. The results are discussed in terms of the mechanism of ATP hydrolysis by nitrogenase and other systems involving protein-protein interactions.


Sign in / Sign up

Export Citation Format

Share Document