physiological constraint
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 6)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 288 (1964) ◽  
Author(s):  
Erica O'Neill ◽  
Hannah E. Davis ◽  
Heath A. MacMillan

The thermotolerance–plasticity trade-off hypothesis predicts that ectotherms with greater basal thermal tolerance have a lower acclimation capacity. This hypothesis has been tested at both high and low temperatures but the results often conflict. If basal tolerance constrains plasticity (e.g. through shared mechanisms that create physiological constraints), it should be evident at the level of the individual, provided the trait measured is repeatable. Here, we used chill-coma onset temperature and chill-coma recovery time (CCO and CCRT; non-lethal thermal limits) to quantify cold tolerance of Drosophila melanogaster across two trials (pre- and post-acclimation). Cold acclimation improved cold tolerance, as expected, but individual measurements of CCO and CCRT in non-acclimated flies were not (or only slightly) repeatable. Surprisingly, however, there was still a strong correlation between basal tolerance and plasticity in cold-acclimated flies. We argue that this relationship is a statistical artefact (specifically, a manifestation of regression to the mean; RTM) and does not reflect a true trade-off or physiological constraint. Thermal tolerance trade-off patterns in previous studies that used similar methodology are thus likely to be impacted by RTM. Moving forward, controlling and/or correcting for RTM effects is critical to determining whether such a trade-off or physiological constraint exists.


2021 ◽  
Author(s):  
Erica O’Neill ◽  
Hannah E. Davis ◽  
Heath A. MacMillan

AbstractThe thermotolerance-plasticity trade-off hypothesis predicts that ectotherms with greater basal thermal tolerance have a lower acclimation capacity. This hypothesis has been tested at both high and low temperatures but the results often conflict. If basal tolerance constrains plasticity (e.g. through shared mechanisms that create physiological constraints), it should be evident at the level of the individual, provided the trait measured is repeatable. Here, we used chill-coma onset temperature and chill-coma recovery time (CCO and CCRT; non-lethal thermal limits) to quantify cold tolerance of Drosophila melanogaster across two trials (pre- and post-acclimation). Cold acclimation improved cold tolerance, as expected, but individual measurements of CCO and CCRT in non-acclimated flies were not (or only slightly) repeatable. Surprisingly, however, there was still a strong correlation between basal tolerance and plasticity in cold-acclimated flies. We argue that this relationship is a statistical artefact (specifically, a manifestation of regression to the mean; RTM) and does not reflect a true trade-off or physiological constraint. Thermal tolerance trade-off patterns in previous studies that used similar methodology are thus likely to be impacted by RTM. Moving forward, controlling and/or correcting for RTM effects is critical to determining whether such a trade-off or physiological constraint truly exists.


2021 ◽  
Author(s):  
Constantin Zohner

<p><strong>Phenological shifts in plants greatly affect biotic interactions and lead to multiple feedbacks to the climate system</strong><strong>. Increases in growing-season length under warmer climates are expected to drive changes in water, nutrient, and energy fluxes as well as enhancing ecosystem carbon uptake</strong><strong>. Yet, future trajectories of growing-season lengths remain highly uncertain because the intrinsic and extrinsic factors triggering autumn leaf senescence, including lagged effects of spring and summer productivity</strong><strong>, are poorly understood. Here, we use 434,226 spring leaf-out and autumn leaf senescence observations of temperate trees from Central Europe between 1948 and 2015 to test the effect of seasonal photosynthetic activity on leaf senescence, thereby exploring the extent to which growing-season lengths are internally regulated by constraints on productivity. We found that spring and summer productivity was a critical driver of autumn phenology, with earlier leaf senescence in years with high seasonal photosynthetic activity. Our new process-based model, incorporating information on growing-season photosynthesis, increased the accuracy of existing autumn phenology models by 22–61%. Furthermore, the physiological constraint of growing-season photosynthesis reversed the predictions of autumn phenology over the rest of the century. </strong><strong>While current phenology models predict that leaf senescence will occur 7–19 days later </strong><strong>by the end of the 21<sup>st</sup> century</strong><strong>, </strong><strong>we estimate that leaf senescence will, in fact, advance by 3–6 days</strong><strong>.</strong><strong> </strong><strong>Our results reveal important constraints on future growing-season lengths and the carbon uptake potential of temperate trees and enhance our capacity to forecast long-term changes in ecosystem functioning, which is critical to improve our understanding of Earth System dynamics in response to climate change.</strong></p>


2020 ◽  
Author(s):  
Zachary B. Hancock ◽  
Faith O. Hardin ◽  
Archana Murthy ◽  
Andrew Hillhouse ◽  
J. Spencer Johnston

AbstractGenome sizes vary by orders of magnitude across the Tree of Life and lack any correlation with organismal complexity. Some crustacean orders, such as amphipods, have genome sizes that correlate with body size, temperature, and water depth, indicating that natural selection may constrain genome sizes due to physiological pressures. In this study, we examine the relationship between genome size, repetitive content, and environmental variables on a clade of sand-burrowing amphipods (Haustoriidae) that are distributed across the Gulf of Mexico and the North Atlantic. We uncover a 6-fold genome size variation within a clade that is less than 7 million years old. Unlike previous studies, we find no correlation between genome size and latitude, but do uncover a significant relationship between genome size and body length. Further, we find that the proportion of repetitive content predicts genome size, and that the largest genomes appear to be driven by expansions of LINE elements. Finally, we find evidence of genomic purging and body size reduction in two lineages that have independently colonized warm brackish waters, possibly indicating a strong physiological constraint of transitioning from surf-swept beaches to protected bays.Significance StatementThe evolution of genome size has been a long-standing puzzle in biology. In this work, we find that genome sizes may be driven by different selection regimes following shifts to a new habitat. Dramatic genome size changes can occur rapidly, in only a few million years.Data Availability StatementRaw data sheets have been deposited on Dryad: SUBMITTED. Raw sequence reads are available at from NCBI under Bioproject SUBMITTED.


The limitation of the fetal growth process during pregnancy is supposed to be an adaptative response to a physical or a physiological constraint: the pelvic size or the maternal resources and metabolism. In this study 131 mother-infant dyads were recruited. We investigate correlation between maternal traits (height, BMI) pelvic variables (conjugate diameter, inter-spinous diameter, sub-pubic angle) and neonatal traits (gestational age, birthweight, head, suboccipito-brematic and abdominal girth). We found that the three neonatal variables are significantly inter-correlated. Among maternal traits, height is highly correlated with conjugate and inter-spinous diameters. Subpubic angle is correlated with inter-spinous diameter. Among neonatal and pelvimetry correlations, conjugate diameter is highly correlated with suboccipito-bregmatic girth. The pelvic size seems to be the primary constraint to the fetal growth process. This adjustement of fetus size to the birth canal dimensions limits the risk of dystocia. But the way this adjustement occurs at the end of pregnancy is unclear. We assume that the uterus expansion limitation may be an intermediate mechanism explaining the high correlation between pelvic and neonatal traits.


2019 ◽  
Vol 19 (6) ◽  
Author(s):  
Tsun Fung Au ◽  
Timothy C Bonebrake

Abstract Distribution shifts are a common response in butterflies to a warming climate. Hong Kong has documented records of several new butterfly species in recent decades, comprising a high proportion of tropical species, some of which have successfully established. In this study, we examined possible drivers for the establishment of Euripus nyctelius Doubleday (Lepidoptera: Nymphalidae) by studying its thermal physiology and modeling current climate and future distributions projected by species distribution modeling (SDM). We found that E. nyctelius adults have a significantly higher critical thermal minimum than its local temperate relative, Hestina assimilis Linnaeus (Lepidoptera: Nymphalidae), suggesting a possible physiological constraint that may have been lifted with recent warming. SDMs provide further evidence that a shifting climate envelope may have improved the climate suitability for E. nyctelius in Hong Kong and South China—however, we cannot rule out the role of other drivers potentially influencing or driving range expansion, habitat change in particular. Conclusive attribution of warming-driven impacts for most tropical species is difficult or not possible due to a lack of historical or long-term data. Tropical insects will require a significant advancement in efforts to monitor species and populations across countries if we are to conclusively document climate-driven shifts in species distributions and manage the consequences of such species redistribution. Nevertheless, the warming climate and subsequent increased climatic suitability for tropical species in poleward areas, as shown here, is likely to result in future species redistribution events in subtropical and temperate ecosystems.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Meredith C Miles ◽  
Franz Goller ◽  
Matthew J Fuxjager

Physiology’s role in speciation is poorly understood. Motor systems, for example, are widely thought to shape this process because they can potentiate or constrain the evolution of key traits that help mediate speciation. Previously, we found that Neotropical manakin birds have evolved one of the fastest limb muscles on record to support innovations in acrobatic courtship display (Fuxjager et al., 2016a). Here, we show how this modification played an instrumental role in the sympatric speciation of a manakin genus, illustrating that muscle specializations fostered divergence in courtship display speed, which may generate assortative mating. However, innovations in contraction-relaxation cycling kinetics that underlie rapid muscle performance are also punctuated by a severe speed-endurance trade-off, blocking further exaggeration of display speed. Sexual selection therefore potentiated phenotypic displacement in a trait critical to mate choice, all during an extraordinarily fast species radiation—and in doing so, pushed muscle performance to a new boundary altogether.


Neuroglia ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 193-219 ◽  
Author(s):  
Suzana Herculano-Houzel ◽  
Sandra Dos Santos

Vertebrate neurons are enormously variable in morphology and distribution. While different glial cell types do exist, they are much less diverse than neurons. Over the last decade, we have conducted quantitative studies of the absolute numbers, densities, and proportions at which non-neuronal cells occur in relation to neurons. These studies have advanced the notion that glial cells are much more constrained than neurons in how much they can vary in both development and evolution. Recent evidence from studies on gene expression profiles that characterize glial cells—in the context of progressive epigenetic changes in chromatin during morphogenesis—supports the notion of constrained variation of glial cells in development and evolution, and points to the possibility that this constraint is related to the late differentiation of the various glial cell types. Whether restricted variation is a biological given (a simple consequence of late glial cell differentiation) or a physiological constraint (because, well, you do not mess with the glia without consequences that compromise brain function to the point of rendering those changes unviable), we predict that the restricted variation in size and distribution of glial cells has important consequences for neural tissue function that is aligned with their many fundamental roles being uncovered.


Sign in / Sign up

Export Citation Format

Share Document