iron molybdenum cofactor
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 7)

H-INDEX

40
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Emma Barahona ◽  
Xi Jiang ◽  
Emilio Jiménez-Vicente ◽  
Luis M. Rubio ◽  
Manuel González-Guerrero

ABSTRACTAzotobacter vinelandii molybdenum-dependent nitrogenase obtains molybdenum from NifQ, a monomeric iron-sulfur molybdoprotein. This protein requires of a preexisting [Fe-S] cluster to form a [MoFe3S4] group to serve as specific donor during nitrogenase cofactor biosynthesis. Here, we show biochemical evidence for NifU being the donor of the [Fe-S] cluster. Protein-protein interaction studies using apo-NifQ and as-isolated NifU demonstrated the interaction between both proteins which is only effective when NifQ is unoccupied by its [Fe-S] cluster. The apo-NifQ iron content increased after the incubation with as-isolated NifU, reaching similar levels to holo-NifQ after the interaction between apo-NifQ and NifU with reconstituted transient [Fe4-S4] groups. These results also indicate the necessity of co-expressing NifU together with NifQ in the pathway to provide molybdenum for the biosynthesis of nitrogenase in engineered nitrogen-fixing plants.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 952
Author(s):  
Paula Bellés-Sancho ◽  
Martina Lardi ◽  
Yilei Liu ◽  
Sebastian Hug ◽  
Marta Adriana Pinto-Carbó ◽  
...  

Homocitrate is an essential component of the iron-molybdenum cofactor of nitrogenase, the bacterial enzyme that catalyzes the reduction of dinitrogen (N2) to ammonia. In nitrogen-fixing and nodulating alpha-rhizobia, homocitrate is usually provided to bacteroids in root nodules by their plant host. In contrast, non-nodulating free-living diazotrophs encode the homocitrate synthase (NifV) and reduce N2 in nitrogen-limiting free-living conditions. Paraburkholderia phymatum STM815 is a beta-rhizobial strain, which can enter symbiosis with a broad range of legumes, including papilionoids and mimosoids. In contrast to most alpha-rhizobia, which lack nifV, P. phymatum harbors a copy of nifV on its symbiotic plasmid. We show here that P. phymatum nifV is essential for nitrogenase activity both in root nodules of papilionoid plants and in free-living growth conditions. Notably, nifV was dispensable in nodules of Mimosa pudica despite the fact that the gene was highly expressed during symbiosis with all tested papilionoid and mimosoid plants. A metabolome analysis of papilionoid and mimosoid root nodules infected with the P. phymatum wild-type strain revealed that among the approximately 400 measured metabolites, homocitrate and other metabolites involved in lysine biosynthesis and degradation have accumulated in all plant nodules compared to uninfected roots, suggesting an important role of these metabolites during symbiosis.


2021 ◽  
Vol 118 (11) ◽  
pp. e2015361118
Author(s):  
Suppachai Srisantitham ◽  
Edward D. Badding ◽  
Daniel L. M. Suess

Nitrogenases utilize Fe–S clusters to reduce N2 to NH3. The large number of Fe sites in their catalytic cofactors has hampered spectroscopic investigations into their electronic structures, mechanisms, and biosyntheses. To facilitate their spectroscopic analysis, we are developing methods for incorporating 57Fe into specific sites of nitrogenase cofactors, and we report herein site-selective 57Fe labeling of the L-cluster—a carbide-containing, [Fe8S9C] precursor to the Mo nitrogenase catalytic cofactor. Treatment of the isolated L-cluster with the chelator ethylenediaminetetraacetate followed by reconstitution with 57Fe2+ results in 57Fe labeling of the terminal Fe sites in high yield and with high selectivity. This protocol enables the generation of L-cluster samples in which either the two terminal or the six belt Fe sites are selectively labeled with 57Fe. Mössbauer spectroscopic analysis of these samples bound to the nitrogenase maturase Azotobacter vinelandii NifX reveals differences in the primary coordination sphere of the terminal Fe sites and that one of the terminal sites of the L-cluster binds to H35 of Av NifX. This work provides molecular-level insights into the electronic structure and biosynthesis of the L-cluster and introduces postbiosynthetic modification as a promising strategy for studies of nitrogenase cofactors.


2021 ◽  
Author(s):  
Aaron H. Phillips ◽  
Jose A Hernandez ◽  
Lucía Payá-Tormo ◽  
Stefan Burén ◽  
Bruno Cuevas-Zuviría ◽  
...  

In nitrogenase biosynthesis, the iron-molybdenum cofactor (FeMo-co) is externally assembled at scaffold proteins and delivered to the NifDK nitrogenase component by the NafY metallochaperone. Here we have used nuclear magnetic...


2021 ◽  
Author(s):  
Leon P. Jenner ◽  
Mickaël V Cherrier ◽  
Patricia Amara ◽  
Luis M Rubio ◽  
Yvain Nicolet

The nitrogenase MoFe protein contains two different FeS centers, the P-cluster and the iron-molybdenum cofactor (FeMo-co). The former is a [Fe8S7] center responsible for conveying electrons to the latter, a...


2018 ◽  
Author(s):  
Patricia Gil-Díez ◽  
Manuel Tejada-Jiménez ◽  
Javier León-Mediavilla ◽  
Jiangqi Wen ◽  
Kirankumar S. Mysore ◽  
...  

ABSTRACTSymbiotic nitrogen fixation in legume root nodules requires a steady supply of molybdenum for synthesis of the iron-molybdenum cofactor of nitrogenase. This nutrient has to be provided by the host plant from the soil, crossing several symplastically disconnected compartments through molybdate transporters, including members of the MOT1 family. MtMOT1.2 is aMedicago truncatulaMOT1 family member located in the endodermal cells in roots and nodules. Immunolocalization of a tagged MtMOT1.2 indicates that it is associated to the plasma membrane and to intracellular membrane systems, where it would be transporting molybdate towards the cytosol, as indicated in yeast transport assays. A loss-of-functionmot1.2-1mutant showed reduced growth compared to wild-type plants when nitrogen fixation was required, but not when nitrogen was provided as nitrate. While no effect on molybdenum-dependent nitrate reductase activity was observed, nitrogenase activity was severely affected, explaining the observed difference of growth depending on nitrogen source. This phenotype was the result of molybdate not reaching the nitrogen-fixing nodules, since genetic complementation with a wild-typeMtMOT1.2gene or molybdate-fortification of the nutrient solution, both restored wild-type levels of growth and nitrogenase activity. These results support a model in which MtMOT1.2 would mediate molybdate delivery by the vasculature into the nodules.


2017 ◽  
Author(s):  
Manuel Tejada-Jiménez ◽  
Patricia Gil-Díez ◽  
Javier León-Mediavilla ◽  
Jiangqi Wen ◽  
Kirankumar S. Mysore ◽  
...  

SummaryMolybdenum, as a component of the iron-molybdenum cofactor of nitrogenase, is essential for symbiotic nitrogen fixation. This nutrient has to be provided by the host plant through molybdate transporters.Members of the molybdate transporters family MOT1 were identified in the model legumeMedicago truncatulaand their expression in nodules determined. Yeast toxicity assays, confocal microscopy, and phenotypical characterization of aTnt1insertional mutant line were carried out in the oneM. truncatulaMOT1 family member expressed specifically in nodules.Among the five MOT1 members present inM. truncatulagenome,MtMOT1.3is the only one uniquely expressed in nodules. MtMOT1.3 shows molybdate transport capabilities when expressed in yeast. Immunolocalization studies revealed that MtMOT1.3 is located in the plasma membrane of nodule cells. Amot1.3-1knockout mutant showed an impaired growth concomitant with a reduction in nitrogenase activity. This phenotype was rescued by increasing molybdate concentrations in the nutritive solution, or upon addition of an assimilable nitrogen source. Furthermore,mot1.3-1plants transformed with a functional copy ofMtMOT1.3showed a wild type-like phenotype.These data are consistent with a model in which MtMOT1.3 would be responsible for introducing molybdate into nodule cells, which will be later used to synthesize functional nitrogenase.


Sign in / Sign up

Export Citation Format

Share Document