scholarly journals Cell-free repair of UV-damaged simian virus 40 chromosomes in human cell extracts. I. Development of a cell-free system detecting excision repair of UV-irradiated SV40 chromosomes.

1993 ◽  
Vol 268 (12) ◽  
pp. 9098-9104 ◽  
Author(s):  
K. Sugasawa ◽  
C. Masutani ◽  
F. Hanaoka
2000 ◽  
Vol 275 (23) ◽  
pp. 17328-17337 ◽  
Author(s):  
Klaus Weisshart ◽  
Hella Förster ◽  
Elisabeth Kremmer ◽  
Bernhard Schlott ◽  
Frank Grosse ◽  
...  

1981 ◽  
Vol 1 (7) ◽  
pp. 635-651
Author(s):  
D C Lee ◽  
R G Roeder

We examined the transcription of a variety of adenovirus type 2 genes in a cell-free system containing purified ribonucleic acid polymerase II and a crude extract from cultured human cells. The early EIA, EIB, EIII, and EIV genes and the intermediate polypeptide IX gene, all of which contain a recognizable TATAA sequence upstream from the cap site, were actively transcribed in vitro, albeit with apparently different efficiencies, whereas the early EII (map position 74.9) and IVa2 genes, both of which lack a TATAA sequence, were not actively transcribed. A reverse transcriptase-primer extension analysis showed that the 5' ends of the in vitro transcripts were identical to those of the corresponding in vivo ribonucleic acids and that, in those instances where initiation was heterogeneous in vivo, a similar kind of heterogeneity was observed in the cell-free system. Transcription of the polypeptide IX gene indicated that this transcript was not terminated at, or processed to, the polyadenylic acid addition site in vitro. We also failed to observe, using the in vitro system, any indication of transcriptional regulation based on the use of adenovirus type 2-infected cell extracts.


1975 ◽  
Vol 72 (5) ◽  
pp. 1922-1926 ◽  
Author(s):  
B. E. Roberts ◽  
M. Gorecki ◽  
R. C. Mulligan ◽  
K. J. Danna ◽  
S. Rozenblatt ◽  
...  

1985 ◽  
Vol 5 (6) ◽  
pp. 1238-1246 ◽  
Author(s):  
J J Li ◽  
T J Kelly

We recently described a soluble cell-free system derived from monkey cells that is capable of replicating exogenous plasmid DNA molecules containing the simian virus 40 (SV40) origin of replication (J.J. Li, and T.J. Kelly, Proc. Natl. Acad. Sci. U.S.A. 81:6973-6977, 1984). Replication in the system is completely dependent upon the addition of the SV40 large T antigen. In this report we describe additional properties of the in vitro replication reaction. Extracts prepared from cells of several nonsimian species were tested for the ability to support origin-dependent replication in the presence of T antigen. The activities of extracts derived from human cell lines HeLa and 293 were approximately the same as those of monkey cell extracts. Chinese hamster ovary cell extracts also supported SV40 DNA replication in vitro, but the extent of replication was approximately 1% of that observed with human or monkey cell extracts. No replication activity was detectable in extracts derived from BALB/3T3 mouse cells. The ability of these extracts to support replication in vitro closely parallels the ability of the same cells to support replication in vivo. We also examined the ability of various DNA molecules containing sequences homologous to the SV40 origin to serve as templates in the cell-free system. Plasmids containing the origins of human papovaviruses BKV and JCV replicated with an efficiency 10 to 20% of that of plasmids containing the SV40 origin. Plasmids containing Alu repeat sequences (BLUR8) did not support detectable DNA replication in vitro. Circular DNA molecules were found to be the best templates for DNA replication in the cell-free system; however, linear DNA molecules containing the SV40 origin also replicated to a significant extent (10 to 20% of circular molecules). Finally, electron microscopy of replication intermediates demonstrated that the initiation of DNA synthesis in vivo takes place at a unique site corresponding to the in vivo origin and that replication is bidirectional. These findings provide further evidence that replication in the cell-free system faithfully mimics SV40 DNA replication in vivo.


1981 ◽  
Vol 1 (7) ◽  
pp. 635-651 ◽  
Author(s):  
D C Lee ◽  
R G Roeder

We examined the transcription of a variety of adenovirus type 2 genes in a cell-free system containing purified ribonucleic acid polymerase II and a crude extract from cultured human cells. The early EIA, EIB, EIII, and EIV genes and the intermediate polypeptide IX gene, all of which contain a recognizable TATAA sequence upstream from the cap site, were actively transcribed in vitro, albeit with apparently different efficiencies, whereas the early EII (map position 74.9) and IVa2 genes, both of which lack a TATAA sequence, were not actively transcribed. A reverse transcriptase-primer extension analysis showed that the 5' ends of the in vitro transcripts were identical to those of the corresponding in vivo ribonucleic acids and that, in those instances where initiation was heterogeneous in vivo, a similar kind of heterogeneity was observed in the cell-free system. Transcription of the polypeptide IX gene indicated that this transcript was not terminated at, or processed to, the polyadenylic acid addition site in vitro. We also failed to observe, using the in vitro system, any indication of transcriptional regulation based on the use of adenovirus type 2-infected cell extracts.


1999 ◽  
Vol 19 (1) ◽  
pp. 147-154 ◽  
Author(s):  
W. Glenn McGregor ◽  
Dong Wei ◽  
Veronica M. Maher ◽  
J. Justin McCormick

ABSTRACT Xeroderma pigmentosum (XP) is a rare genetic disease characterized by a greatly increased susceptibility to sunlight-induced skin cancer. Cells from the majority of patients are defective in nucleotide excision repair. However, cells from one set of patients, XP variants, exhibit normal repair but are abnormally slow in replicating DNA containing UV photoproducts. The frequency of UV radiation-induced mutations in the XP variant cells is significantly higher than that in normal human cells. Furthermore, the kinds of UV-induced mutations differ very significantly from normal. Instead of transitions, mainly C→T, 30% of the base substitutions consist of C→A transversions, all arising from photoproducts located in one strand. Mutations involving cytosine in the other strand are almost all C→T transitions. Forty-five percent of the substitutions involve thymine, and the majority are transversions. To test the hypothesis that the UV hypermutability and the abnormal spectrum of mutations result from abnormal bypass of photoproducts in DNA, we compared extracts from XP variant cells with those from HeLa cells and a fibroblast cell strain, MSU-1.2, for the ability to replicate a UV-irradiated form I M13 phage. The M13 template contains a simian virus 40 origin of replication located directly to the left or to the right of the target gene,lacZα, so that the template for the leading and lagging strands of DNA replication is defined. Reduction of replication to ∼37% of the control value required only 1 photoproduct per template for XP variant cell extracts, but ∼2.2 photoproducts for HeLa or MSU-1.2 cell extracts. The frequency of mutants induced was four times higher with XP variant cell extracts than with HeLa or MSU-1.2 cell extracts. With XP variant cell extracts, the proportion of C→A transversions reached as high as 43% with either M13 template and arose from photoproducts located in the template for leading-strand synthesis; with HeLa or MSU-1.2 cell extracts, this value was only 5%, and these arose from photoproducts in either strand. With the XP variant extracts, 26% of the substitutions involved thymine, and virtually all were T→A transversions. Sequence analysis of the coding region of the catalytic subunit of DNA polymerase delta in XP variant cell lines revealed two polymorphisms, but these do not account for the reduced bypass fidelity. Our data indicate that the UV hypermutability of XP variant cells results from reduced bypass fidelity and that unlike for normal cells, bypass of photoproducts involving cytosine in the template for the leading strand differs significantly from that of photoproducts in the lagging strand.


1985 ◽  
Vol 5 (6) ◽  
pp. 1238-1246
Author(s):  
J J Li ◽  
T J Kelly

We recently described a soluble cell-free system derived from monkey cells that is capable of replicating exogenous plasmid DNA molecules containing the simian virus 40 (SV40) origin of replication (J.J. Li, and T.J. Kelly, Proc. Natl. Acad. Sci. U.S.A. 81:6973-6977, 1984). Replication in the system is completely dependent upon the addition of the SV40 large T antigen. In this report we describe additional properties of the in vitro replication reaction. Extracts prepared from cells of several nonsimian species were tested for the ability to support origin-dependent replication in the presence of T antigen. The activities of extracts derived from human cell lines HeLa and 293 were approximately the same as those of monkey cell extracts. Chinese hamster ovary cell extracts also supported SV40 DNA replication in vitro, but the extent of replication was approximately 1% of that observed with human or monkey cell extracts. No replication activity was detectable in extracts derived from BALB/3T3 mouse cells. The ability of these extracts to support replication in vitro closely parallels the ability of the same cells to support replication in vivo. We also examined the ability of various DNA molecules containing sequences homologous to the SV40 origin to serve as templates in the cell-free system. Plasmids containing the origins of human papovaviruses BKV and JCV replicated with an efficiency 10 to 20% of that of plasmids containing the SV40 origin. Plasmids containing Alu repeat sequences (BLUR8) did not support detectable DNA replication in vitro. Circular DNA molecules were found to be the best templates for DNA replication in the cell-free system; however, linear DNA molecules containing the SV40 origin also replicated to a significant extent (10 to 20% of circular molecules). Finally, electron microscopy of replication intermediates demonstrated that the initiation of DNA synthesis in vivo takes place at a unique site corresponding to the in vivo origin and that replication is bidirectional. These findings provide further evidence that replication in the cell-free system faithfully mimics SV40 DNA replication in vivo.


Sign in / Sign up

Export Citation Format

Share Document