scholarly journals Arachidonic acid inhibits myosin light chain phosphatase and sensitizes smooth muscle to calcium.

1992 ◽  
Vol 267 (30) ◽  
pp. 21492-21498
Author(s):  
M.C. Gong ◽  
A Fuglsang ◽  
D Alessi ◽  
S Kobayashi ◽  
P Cohen ◽  
...  
1994 ◽  
Vol 267 (3) ◽  
pp. H952-H961 ◽  
Author(s):  
G. D'Angelo ◽  
G. Osol

The purpose of this study was to determine whether the increased sensitivity of uterine resistance arteries from late pregnant (LP) rats to alpha-adrenergic stimulation is due to an alteration in the fundamental relationship between cytosolic calcium (Ca2+) and arterial lumen diameter. Uterine arcuate arteries were permeabilized with Staphylococcus aureus alpha-toxin under optimal conditions and constricted to varying degrees with discrete Ca2+ concentrations at a distending pressure of 50 mmHg. Arterial segments from nonpregnant (NP) and LP rats exhibited similar Ca2+/lumen diameter characteristics. Ca2+ (0.1 microM) produced appreciable constriction, and lumen diameter decreased steeply between 0.175 and 0.25 microM Ca2+; maximal responses were attained with 0.5 microM Ca2+. Activation of guanine nucleotide binding proteins (G proteins) with guanosine 5'-triphosphate (GTP; 1-100 microM), as reportedly occurs during alpha-adrenergic stimulation, potentiated the Ca(2+)-induced constriction by 121 and 79% in arteries from LP and NP rats, respectively. No significant differences between the two animal groups were noted. Guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S; 0.1-10 microM), a nonhydrolyzable analogue of GTP, effected a larger potentiating effect over that maximal response caused by GTP in arteries from NP rats. Ca(2+)- and Ca2+/GTP-induced constrictions were more potently reversed by guanosine 5'-O-(beta-thiodiphosphate) (GDP beta S)., a competitive inhibitor of GTP, in arteries from NP rats. These data suggest that pregnancy-induced increases in sensitivity to alpha-adrenergic stimulation may be related to altered G protein cycling rates, such that G proteins in smooth muscle cells in arcuate arteries from NP rats are more susceptible to deactivation. Alternatively, consistent with the model of G protein-mediated inhibition of myosin light chain phosphatase, myosin light chain phosphatase activity may be enhanced in uterine vascular smooth muscle from NP rats relative to that from LP rats.


2001 ◽  
Vol 276 (36) ◽  
pp. 34318-34322 ◽  
Author(s):  
Knut Langsetmo ◽  
Walter F. Stafford ◽  
Katsuhide Mabuchi ◽  
Terence Tao

2005 ◽  
Vol 83 (10) ◽  
pp. 857-864 ◽  
Author(s):  
Richard A Murphy ◽  
Christopher M Rembold

In contrast to striated muscle, both normalized force and shortening velocities are regulated functions of cross-bridge phosphorylation in smooth muscle. Physiologically this is manifested as relatively fast rates of contraction associated with transiently high levels of cross-bridge phosphorylation. In sustained contractions, Ca2+, cross-bridge phosphorylation, and ATP consumption rates fall, a phenomenon termed "latch". This review focuses on the Hai and Murphy (1988a) model that predicted the highly non-linear dependence of force on phosphorylation and a directly proportional dependence of shortening velocity on phosphorylation. This model hypothesized that (i) cross-bridge phosphorylation was obligatory for cross-bridge attachment, but also that (ii) dephosphorylation of an attached cross-bridge reduced its detachment rate. The resulting variety of cross-bridge cycles as predicted by the model could explain the observed dependencies of force and velocity on cross-bridge phosphorylation. New evidence supports modifications for more general applicability. First, myosin light chain phosphatase activity is regulated. Activation of myosin phosphatase is best demonstrated with inhibitory regulatory mechanisms acting via nitric oxide. The second modification of the model incorporates cooperativity in cross-bridge attachment to predict improved data on the dependence of force on phosphorylation. The molecular basis for cooperativity is unknown, but may involve thin filament proteins absent in striated muscle.Key words: chemo-mechanical transduction, activation-contraction coupling, cross-bridge, myosin light chain kinase, myosin light chain phosphatase, phosphorylation, cooperativity.


2002 ◽  
Vol 367 (2) ◽  
pp. 517-524 ◽  
Author(s):  
Jing Ti DENG ◽  
Cindy SUTHERLAND ◽  
David L. BRAUTIGAN ◽  
Masumi ETO ◽  
Michael P. WALSH

Integrin-linked kinase (ILK) has been implicated in Ca2+- independent contraction of smooth muscle via its ability to phosphorylate myosin. We investigated the possibility that this kinase might also phosphorylate and regulate the myosin light-chain phosphatase inhibitor proteins CPI-17 [protein kinase C (PKC)-dependent phosphatase inhibitor of 17kDa] and PHI-1 (phosphatase holoenzyme inhibitor-1), known substrates of PKC. Both phosphatase inhibitors were phosphorylated by ILK in an in-gel kinase assay and in solution. A Thr→Ala mutation at Thr38 of CPI-17 and Thr57 of PHI-1 eliminated phosphorylation by ILK. Phosphopeptide mapping, phospho amino acid analysis and immunoblotting using phospho-specific antibodies indicated that ILK predominantly phosphorylated the site critical for potent inhibition, i.e. Thr38 of CPI-17 or Thr57 of PHI-1. CPI-17 and PHI-1 thiophosphorylated by ILK at Thr38 or Thr57 respectively inhibited myosin light-chain phosphatase (MLCP) activity bound to myosin, whereas the site-specific mutants CPI-17-Thr38Ala and PHI-1-Thr57Ala, treated with ILK under identical conditions, like the untreated wild-type proteins had no effect on the phosphatase. Consistent with these effects, both thiophospho-CPI-17 and -PHI-1 induced Ca2+ sensitization of contraction of Triton X-100-demembranated rat-tail arterial smooth muscle, whereas CPI-17-Thr38Ala and PHI-1-Thr57Ala treated with ILK in the presence of adenosine 5′-[γ-thio]triphosphate failed to evoke a contractile response. We conclude that ILK may activate smooth-muscle contraction both directly, via phosphorylation of myosin, and indirectly, via phosphorylation and activation of CPI-17 and PHI-1, leading to inhibition of MLCP.


2000 ◽  
Vol 349 (3) ◽  
pp. 797-804 ◽  
Author(s):  
Aki YAMADA ◽  
Osamu SATO ◽  
Minoru WATANABE ◽  
Michael P. WALSH ◽  
Yasuo OGAWA ◽  
...  

Ruthenium Red (RuR) is widely used as an inhibitor of ryanodine receptor Ca2+ release channels, but has additional effects such as the induction of Ca2+ sensitization of contraction of permeabilized smooth muscles. To address the mechanism underlying this process, we examined the effects of RuR on contractility in permeabilized guinea-pig ileum and on the activity of myosin-light-chain phosphatase (MP). RuR increased the force at submaximal [Ca2+] (pCa 6.3) approx. 4-fold. This effect was not observed after thiophosphorylation of MP. RuR also seemed capable of preventing the thiophosphorylation of MP, suggesting a direct interaction of RuR with MP. Consistent with this possibility, smooth-muscle MP was inhibited by RuR in a concentration-dependent manner (IC50 23µM). Exogenous calmodulin significantly increased RuR-induced contraction at pCa 6.3 but had little effect on contraction induced by microcystin at this [Ca2+]. Ca2+-independent contraction was induced by RuR (EC50 843µM) and by microcystin (EC50 59nM) but the maximal force induced by RuR was smaller than that induced by microcystin. The addition of 300µM RuR enhanced the contraction induced by 30nM microcystin but markedly decreased that induced by 1µM microcystin. Such a dual action of RuR on microcystin-induced effects was not observed in experiments using purified MP. We conclude that the RuR-induced Ca2+ sensitization of smooth-muscle contraction is due to the direct inhibition of MP by RuR.


Sign in / Sign up

Export Citation Format

Share Document