smooth muscle contraction
Recently Published Documents


TOTAL DOCUMENTS

1343
(FIVE YEARS 166)

H-INDEX

78
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Hanxue Sun ◽  
Xizhong Du ◽  
Tao Zeng ◽  
Shenggang Ruan ◽  
Guoqin Li ◽  
...  

This experiment was conducted to investigate the effects of compound probiotics on intestinal microflora and metabolome of Shaoxing ducks. A total of 640 1-day-old Shaoxing ducks were randomly divided into two treatments with eight replicates and forty ducks for each replicate. The ducks were fed basal diet (Ctrl) and basal diet supplemented with 0.15% compound probiotics (MixP). The experiment lasted for 85 days. The results showed that the abundance of Bacteroidetes and Bacteroides in MixP was higher than that in Ctrl (P < 0.05). However, the abundance of Firmicutes and Oscillospira and Desulfovibrio in MixP was lower than that in Ctrl (P < 0.05). Concentrations of 71 metabolites differed significantly (P < 0.05) between the MixP and the Ctrl groups; for example, Pyridoxal (Vitamin B6), L-Arginine, and Betaine aldehyde were up-regulated (P < 0.05), and 7-oxocholesterol, 3-hydroxy-L-kynureni-ne, and N-acetyl-d-glucosamine were down-regulated (P < 0.05). KEGG was enriched in 15 metabolic pathways. The pathways of Vitamin B6 metabolism, Vascular smooth muscle contraction, Vitamin digestion and absorption, and Protein digestion and absorption were influenced by compound probiotics supplementation. Thus, supplementation of compound probiotics improved cecal heath through shifts in the cecal microbiome and metabolome.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Xianglan Li ◽  
Rihua Jiang ◽  
Haiguo Jin ◽  
Zhehao Huang

Background. Keloid is a benign dermal tumor characterized by abnormal proliferation and invasion of fibroblasts. The establishment of biomarkers is essential for the diagnosis and treatment of keloids. Methods. We systematically identified coexpression modules using the weighted gene coexpression network analysis method (WGCNA). Differential expressed genes (DEGs) in GSE145725 and genes in significant modules were integrated to identify overlapping key genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were then performed, as well as protein-protein interaction (PPI) network construction for hub gene screening. Results. Using the R package of WGCNA, 22 coexpression modules consisting of different genes were identified from the top 5,000 genes with maximum mean absolute deviation in 19 human fibroblast samples. Blue-green and yellow modules were identified as the most important modules, where genes overlapping with DEGs were identified as key genes. We identified the most critical functions and pathways as extracellular structure organization, vascular smooth muscle contraction, and the cGMP-PKG signaling pathway. Hub genes from key genes as BMP4, MSX1, HAND2, TBX2, SIX1, IRX1, EDN1, DLX5, MEF2C, and DLX2 were identified. Conclusion. The blue-green and yellow modules may play an important role in the pathogenesis of keloid. 10 hub genes were identified as potential biomarkers and therapeutic targets for keloid.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 78
Author(s):  
Juhyun Park ◽  
Soo Woong Kim ◽  
Min Chul Cho

The LIM kinases (LIMK1 and LIMK2), known as downstream effectors, and the Rho-associated protein kinase (ROCK), a regulator of actin dynamics, have effects on a diverse set of cellular functions. The LIM kinases are involved in the function of the male urogenital system by smooth muscle contraction via phosphorylation of cofilin and subsequent actin cytoskeleton reorganization. Although LIMK1 and LIMK2 share sequence similarities as serine protein kinases, different tissue distribution patterns and distinct localization during cell cycle progression suggest other biological functions for each kinase. During meiosis and mitosis, the LIMK1/2–cofilin signaling facilitates the orchestrated chromatin remodeling between gametogenesis and the actin cytoskeleton. A splicing variant of the LIMK2 transcript was expressed only in the testis. Moreover, positive signals with LIMK2-specific antibodies were detected mainly in the nucleus of the differentiated stages of germ cells, such as spermatocytes and early round spermatids. LIMK2 plays a vital role in proper spermatogenesis, such as meiotic processes of spermatogenesis after puberty. On the other hand, the literature evidence revealed that a reduction in LIMK1 expression enhanced the inhibitory effects of a ROCK inhibitor on the smooth muscle contraction of the human prostate. LIMK1 may have a role in urethral obstruction and bladder outlet obstruction in men with benign prostatic hyperplasia. Moreover, LIMK1 expression was reduced in urethral stricture. The reduced LIMK1 expression caused the impaired proliferation and migration of urethral fibroblasts. In addition, the activated LIMK2–cofilin pathway contributes to cavernosal fibrosis after cavernosal nerve injury. Recent evidence demonstrated that short-term inhibition of LIMK2 from the immediate post-injury period prevented cavernosal fibrosis and improved erectile function in a rat model of cavernosal nerve injury. Furthermore, chronic inhibition of the LIMK2–cofilin pathway significantly restrained the cavernosal veno-occlusive dysfunction, the primary pathophysiologic mechanism of post-prostatectomy erectile dysfunction through suppressing fibrosis in the corpus cavernosum. In conclusion, the LIM kinases–cofilin pathway appears to play a role in the function of the male urogenital system through actin cytoskeleton reorganization and contributes to the pathogenesis of several urogenital diseases. Therefore, LIM kinases may be a potential treatment target in urogenital disorder.


2021 ◽  
Vol 4 (1) ◽  
pp. 13-23
Author(s):  
Zheng Yuebin ◽  
Florenly ◽  
Liena ◽  
Fioni

Epidemiological studies show that nearly 20% of the world's population suffers from diseases related to allergies and asthma. The main compound of turmeric is curcumin has several pharmacological properties, antioxidant properties, anti-inflammatory, asthma treatment. The study aimed to determine the effects of ethanol extract Curcuma longa on the smooth muscle of the isolated guinea pigtic trachea in acetylcholine induction. This research method was experimental to observe the relationship of Curcuma longa ethanol extract (EECL) to the relaxing effects of isolated smooth muscle trachea marmot (tracheal ring chain) inserted into a bath organ filled with Kreb's physiological fluid by maintaining a temperature of 35-370C and associated with a Matlab recorder. Samples used by male guinea pigs and ethanol extract Curcuma longa (EECL). The results of the study that ethanol extract Curcuma longa has a relaxing effect on the smooth muscles of the trachea isolated from the experimental rats contracted with acetylcholine. Ethanol extract Curcuma longa has the ability not dising from theophylline 2 x 10-4 M in reducing smooth muscle contraction of insulated Cavia porcelain trachea induced by acetylcholine, acetylcholine strength without incubation contraction compared to acetylcholine with EECL incubation showed statistically different results (p <0.05). The mechanism of Curcuma longa relaxation effect on isolated guinea pig smooth muscle is mediated through inhibition of the enzyme PDE.


Author(s):  
Magali Boucher ◽  
Cyndi Henry ◽  
Fatemeh Khadangi ◽  
Alexis Dufour-Mailhot ◽  
Sophie Tremblay-Pitre ◽  
...  

There are renewed interests in using the parameter K of Salazar-Knowles' equation to assess lung tissue compliance. K either decreases or increases when the lung's parenchyma stiffens or loosens, respectively. However, whether K is affected by other common features of respiratory diseases, such as inflammation and airway smooth muscle (ASM) contraction, is unknown. Herein, male C57BL/6 mice were treated intranasally with either saline or lipopolysaccharide (LPS) at 1 mg/Kg to induce pulmonary inflammation. They were then subjected to either a multiple or a single-dose challenge with methacholine to activate ASM to different degrees. A quasi-static pressure-driven partial pressure-volume maneuver was performed before and after methacholine. The Salazar-Knowles' equation was then fitted to the deflation limb of the P-V loop to obtain K, as well as the parameter A, an estimate of lung volume (inspiratory capacity). The fitted curve was also used to derive the quasi-static elastance (Est) at 5 cmH2O. The results demonstrate that LPS and both methacholine challenges increased Est. LPS also decreased A, but did not affect K. In contradistinction, methacholine decreased both A and K in the multiple-dose challenge, while it decreased K but not A in the single-dose challenge. These results suggest that LPS increases Est by reducing the open lung volume (A) and without affecting tissue compliance (K), while methacholine increases Est by decreasing tissue compliance with or without affecting lung volume. We conclude that lung tissue compliance, assessed using the parameter K of Salazar-Knowles' equation, is insensitive to inflammation but sensitive to ASM contraction.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Hong Lin Zu ◽  
Hong Wei Liu ◽  
Hai Yang Wang

Abstract Background The diameter of the abdominal aortic aneurysm (AAA) is the most commonly used parameter for the prediction of occurrence of AAA rupture. However, the most vulnerable region of the aortic wall may be different from the most dilated region of AAA under pressure. The present study is the first to use weighted gene coexpression network analysis (WGCNA) to detect the coexpressed genes that result in regional weakening of the aortic wall. Methods The GSE165470 raw microarray dataset was used in the present study. Differentially expressed genes (DEGs) were filtered using the “limma” R package. DEGs were assessed by Gene Ontology biological process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. WGCNA was used to construct the coexpression networks in the samples with regional weakening of the AAA wall and in the control group to detect the gene modules. The hub genes were defined in the significant functional modules, and a hub differentially expressed gene (hDEG) coexpression network was constructed with the highest confidence based on protein–protein interactions (PPIs). Molecular compound detection (MCODE) was used to identify crucial genes in the hDEG coexpression network. Crucial genes in the hDEG coexpression network were validated using the GSE7084 and GSE57691 microarray gene expression datasets. Result A total of 350 DEGs were identified, including 62 upregulated and 288 downregulated DEGs. The pathways were involved in immune responses, vascular smooth muscle contraction and cell–matrix adhesion of DEGs in the samples with regional weakening in AAA. Antiquewhite3 was the most significant module and was used to identify downregulated hDEGs based on the result of the most significant modules negatively related to the trait of weakened aneurysm walls. Seven crucial genes were identified and validated: ACTG2, CALD1, LMOD1, MYH11, MYL9, MYLK, and TPM2. These crucial genes were associated with the mechanisms of AAA progression. Conclusion We identified crucial genes that may play a significant role in weakening of the AAA wall and may be potential targets for medical therapies and diagnostic biomarkers. Further studies are required to more comprehensively elucidate the functions of crucial genes in the pathogenesis of regional weakening in AAA.


2021 ◽  
Author(s):  
Ho-Joon Lee

The new coronavirus species, SARS-CoV-2, caused an unprecedented global pandemic of COVID-19 disease since late December 2019. A comprehensive characterization of protein-protein interactions (PPIs) between SARS-CoV-2 and human cells is a key to understanding the infection and preventing the disease. Here we present a novel approach to predict virus-host PPIs by multi-label machine learning classifiers of random forests and XGBoost using amino acid composition profiles of virus and human proteins. Our models harness a large-scale database of Viruses.STRING with >80,000 virus-host PPIs along with evidence scores for multi-level evidence prediction, which is distinct from predicting binary interactions in previous studies. Our multi-label classifiers are based on 5 evidence levels binned from evidence scores. Our best model of XGBoost achieves 74% AUC and 68% accuracy on average in 10-fold cross validation. The most important amino acids are cysteine and histidine. In addition, our model predicts experimental PPIs with higher evidence level than text mining-based PPIs. We then predict evidence levels of ~2,000 SARS-CoV-2 virus-human PPIs from public experimental proteomics data. Interactions with SARS-CoV-2 Nsp7b show high evidence. We also predict evidence levels of all pairwise PPIs of ~550,000 between the SARS-CoV-2 and human proteomes to provide a draft virus-host interactome landscape for SARS-CoV-2 infection in humans in a comprehensive and unbiased way in silico. Most human proteins from 140 highest evidence predictions interact with SARS-CoV-2 Nsp7, Nsp1, and ORF14, with significant enrichment in the top 2 pathways of vascular smooth muscle contraction (CALD1, NPR2, CALML3) and Myc targets (CBX3, PES1). Our prediction also suggests that histone H2A components are targeted by multiple SARS-CoV-2 proteins.


2021 ◽  
Vol 22 (21) ◽  
pp. 12037
Author(s):  
Sungwoo Jo ◽  
Eunhee Yang ◽  
Yechan Lee ◽  
Dongkyu Jeon ◽  
Wan Namkung

Anoctamin1 (ANO1), a calcium-activated chloride channel, is frequently overexpressed in several cancers, including oral squamous cell carcinoma (OSCC). OSCC is a highly aggressive cancer and the most common oral malignancy. ANO1 has been proposed as a potential candidate for targeted anticancer therapy. In this study, we performed a cell-based screening to identify novel regulators leading to the downregulation of ANO1, and discovered cinobufagin, which downregulated ANO1 expression in oral squamous cell carcinoma CAL-27 cells. ANO1 protein levels were significantly reduced by cinobufagin in a dose-dependent manner with an IC50 value of ~26 nM. Unlike previous ANO1 inhibitors, short-term (≤10 min) exposure to cinobufagin did not alter ANO1 chloride channel activity and ANO1-dependent intestinal smooth muscle contraction, whereas long-term (24 h) exposure to cinobufagin significantly reduced phosphorylation of STAT3 and mRNA expression of ANO1 in CAL-27 cells. Notably, cinobufagin inhibited cell proliferation of CAL-27 cells expressing high levels of ANO1 more potently than that of ANO1 knockout CAL-27 cells. In addition, cinobufagin significantly reduced cell migration and induced caspase-3 activation and PARP cleavage in CAL-27 cells. These results suggest that downregulation of ANO1 by cinobufagin is a potential mechanism for the anticancer effect of cinobufagin in OSCC.


Sign in / Sign up

Export Citation Format

Share Document