mechanical transduction
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 19)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Yiqian Luo ◽  
Jie Li ◽  
Baoqin Li ◽  
Yuanliang Xia ◽  
Hengyi Wang ◽  
...  

The behavior of nerve cells plays a crucial role in nerve regeneration. The mechanical, topographical, and electrical microenvironment surrounding nerve cells can activate cellular signaling pathways of mechanical transduction to affect the behavior of nerve cells. Recently, biological scaffolds with various physical properties have been developed as extracellular matrix to regulate the behavior conversion of nerve cell, such as neuronal neurite growth and directional differentiation of neural stem cells, providing a robust driving force for nerve regeneration. This review mainly focused on the biological basis of nerve cells in mechanical transduction. In addition, we also highlighted the effect of the physical cues, including stiffness, mechanical tension, two-dimensional terrain, and electrical conductivity, on neurite outgrowth and differentiation of neural stem cells and predicted their potential application in clinical nerve tissue engineering.


2021 ◽  
Vol 3 (9) ◽  
pp. 4091-4104
Author(s):  
Krutarth Kamath ◽  
Vivek ADEPU ◽  
Venkat Mattela ◽  
Parikshit Sahatiya

2021 ◽  
pp. 2101326
Author(s):  
Alexandre F. Carvalho ◽  
Bohdan Kulyk ◽  
António J. S. Fernandes ◽  
Elvira Fortunato ◽  
Florinda M. Costa

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhiming Hu ◽  
Yunlong Li ◽  
Jiu-an Lv

AbstractSelf-oscillating systems that enable autonomous, continuous motions driven by an unchanging, constant stimulus would have significant applications in intelligent machines, advanced robotics, and biomedical devices. Despite efforts to gain self-oscillations have been made through artificial systems using responsive soft materials of gels or liquid crystal polymers, these systems are plagued with problems that restrict their practical applicability: few available oscillation modes due to limited degrees of freedom, inability to control the evolution between different modes, and failure under loading. Here we create a phototunable self-oscillating system that possesses a broad range of oscillation modes, controllable evolution between diverse modes, and loading capability. This self-oscillating system is driven by a photoactive self-winding fiber actuator designed and prepared through a twistless strategy inspired by the helix formation of plant-tendrils, which endows the system with high degrees of freedom. It enables not only controllable generation of three basic self-oscillations but also production of diverse complex oscillatory motions. Moreover, it can work continuously over 1270000 cycles without obvious fatigue, exhibiting high robustness. We envision that this system with controllable self-oscillations, loading capability, and mechanical robustness will be useful in autonomous, self-sustained machines and devices with the core feature of photo-mechanical transduction.


Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Guangdao Zhang ◽  
Xiaofei Li ◽  
Lin Wu ◽  
Yi-Xian Qin

AbstractMechanobiological stimuli, such as low-intensity pulsed ultrasound (LIPUS), have been shown to promote bone regeneration and fresh fracture repair, but the fundamental biophysical mechanisms involved remain elusive. Here, we propose that a mechanosensitive ion channel of Piezo1 plays a pivotal role in the noninvasive ultrasound-induced mechanical transduction pathway to trigger downstream cellular signal processes. This study aims to investigate the expression and role of Piezo1 in MC3T3-E1 cells after LIPUS treatment. Immunofluorescence analysis shows that Piezo1 was present on MC3T3-E1 cells and could be ablated by shRNA transfection. MC3T3-E1 cell migration and proliferation were significantly increased by LIPUS stimulation, and knockdown of Piezo1 restricted the increase in cell migration and proliferation. After labeling with Fluo-8, MC3T3-E1 cells exhibited fluorescence intensity traces with several high peaks compared with the baseline during LIPUS stimulation. No obvious change in the fluorescence intensity tendency was observed after LIPUS stimulation in shRNA-Piezo1 cells, which was similar to the results in the GsMTx4-treated group. The phosphorylation ratio of ERK1/2 in MC3T3-E1 cells was significantly increased (P < 0.01) after LIPUS stimulation. In addition, Phalloidin-iFluor-labeled F-actin filaments immediately accumulated in the perinuclear region after LIPUS stimulation, continued for 5 min, and then returned to their initial levels at 30 min. These results suggest that Piezo1 can transduce LIPUS-induced mechanical signals into intracellular calcium. The influx of Ca2+ serves as a second messenger to activate ERK1/2 phosphorylation and perinuclear F-actin filament polymerization, which regulate the proliferation of MC3T3-E1 cells.


Author(s):  
Bernardo Orr ◽  
Filipe De Sousa ◽  
Ana Margarida Gomes ◽  
Luísa T. Ferreira ◽  
Ana C. Figueiredo ◽  
...  

SummaryMicronuclei are a hallmark of cancer and other human disorders and have recently been implicated in chromothripsis, a series of massive genomic rearrangements that may drive tumor evolution and progression. Here we show that Aurora B kinase mediates a surveillance mechanism that integrates error correction during anaphase with spatial control of nuclear envelope reformation to protect against micronuclei formation during human cell division. Using high-resolution live-cell imaging of human cancer and non-cancer cells we found that anaphase lagging chromosomes are often transient and rarely formed micronuclei. This strong bias against micronuclei formation relied on a midzone-based Aurora B phosphorylation gradient that assisted the mechanical transduction of spindle forces at the kinetochore-microtubule interface required for anaphase error correction, while delaying nuclear envelope reformation on lagging chromosomes, independently of microtubules. Our results uncover a new layer of protection against genomic instability and provide a strategy for the rational design of micronuclei-targeting therapies.


2021 ◽  
Vol 2021 ◽  
pp. 1-13 ◽  
Author(s):  
Bingjin Wang ◽  
Wencan Ke ◽  
Kun Wang ◽  
Gaocai Li ◽  
Liang Ma ◽  
...  

Mechanical stimulation plays a crucial part in the development of intervertebral disc degeneration (IDD). Extracellular matrix (ECM) stiffness, which is a crucial mechanical microenvironment of the nucleus pulposus (NP) tissue, contributes to the pathogenesis of IDD. The mechanosensitive ion channel Piezo1 mediates mechanical transduction. This study purposed to investigate the function of Piezo1 in human NP cells under ECM stiffness. The expression of Piezo1 and the ECM elasticity modulus increased in degenerative NP tissues. Stiff ECM activated the Piezo1 channel and increased intracellular Ca2+ levels. Moreover, the activation of Piezo1 increased intracellular reactive oxygen species (ROS) levels and the expression of GRP78 and CHOP, which contribute to oxidative stress and endoplasmic reticulum (ER) stress. Furthermore, stiff ECM aggravated oxidative stress-induced senescence and apoptosis in human NP cells. Piezo1 inhibition alleviated oxidative stress-induced senescence and apoptosis, caused by the increase in ECM stiffness. Finally, Piezo1 silencing ameliorated IDD in an in vivo rat model and decreased the elasticity modulus of rat NP tissues. In conclusion, we identified the mechanosensitive ion channel Piezo1 in human NP cells as a mechanical transduction mediator for stiff ECM stimulation. Our results provide novel insights into the mechanism of mechanical transduction in NP cells, with potential for treating IDD.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 919
Author(s):  
Vladimir Anisimkin ◽  
Vladimir Kolesov ◽  
Anastasia Kuznetsova ◽  
Elizaveta Shamsutdinova ◽  
Iren Kuznetsova

It is shown that, in spite of the wave radiation into the adjacent liquid, a large group of Lamb waves are able to propagate along piezoelectric plates (quartz, LiNbO3, LiTaO3) coated with a liquid layer (distilled water H2O). When the layer freezes, most of the group’s waves increase their losses, essentially forming an acoustic response towards water-to-ice transformation. Partial contributions to the responses originating from wave propagation, electro-mechanical transduction, and wave scattering were estimated and compared with the coupling constants, and the vertical displacements of the waves were calculated numerically at the water–plate and ice–plate interfaces. The maximum values of the responses (20–30 dB at 10–100 MHz) are attributed to the total water-to-ice transformation. Time variations in the responses at intermediate temperatures were interpreted in terms of a two-phase system containing both water and ice simultaneously. The results of the paper may turn out to be useful for some applications where the control of ice formation is an important problem (aircraft wings, ship bodies, car roads, etc.).


2021 ◽  
Vol 17 ◽  
pp. 174480692110140
Author(s):  
Ryo Ikeda ◽  
Daigo Arimura ◽  
Mitsuru Saito

Osteoarthritis of the knee impairs activities of daily living of those affected. Its irreversible degenerative changes to the knee joint induce functional disturbance and unpleasant arthralgia. The pain has inflammatory components and often is manifested with mechanical allodynia and hyperalgesia. Sustained weight bearing and joint movements increase pain sensitivity in knee osteoarthritis. Understanding the mechanisms underlying the mechanical allodynia and hyperalgesia might provide a therapeutical target for pain relief in patients with such symptoms. Piezo channel is a mechanically activated ion channel that may be involved in mechanical transduction in the articular cartilage. Although it has been shown that inflammation potentiates Piezo channel current induced by mechanical stimulation, whether Piezo expression levels are influenced by knee osteoarthritis has remained unknown. We measured Piezo mRNA in knee joints and dorsal root ganglia after establishing a model of knee osteoarthritis in rats using monosodium iodoacetate and found Piezo mRNA level is not upregulated. This finding raises a question as whether and how Piezo channels may be involved in mechanically induced pain in osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document