scholarly journals Protein kinase C-independent activation of nuclear factor kappa B by tumor necrosis factor.

1990 ◽  
Vol 265 (14) ◽  
pp. 8339-8343
Author(s):  
A Meichle ◽  
S Schütze ◽  
G Hensel ◽  
D Brunsing ◽  
M Krönke
1993 ◽  
Vol 264 (1) ◽  
pp. L7-L14 ◽  
Author(s):  
T. J. Ferro ◽  
D. M. Parker ◽  
L. M. Commins ◽  
P. G. Phillips ◽  
A. Johnson

We investigated the hypothesis that tumor necrosis factor-alpha (TNF) activates pulmonary endothelial protein kinase C (PKC). Confluent bovine pulmonary artery endothelial monolayers were exposed to recombinant human TNF, and the translocation of PKC, an indicator of enzyme activation, was studied using both slot immunoblotting and immunofluorescence. For slot immunoblot analysis, membrane and cytosol lysate fractions were prepared, and PKC antigen was assessed using MC5 monoclonal anti-PKC antibody. TNF (1,000 U/ml for 15 min) induced translocation of PKC into the membrane. Immunofluorescence analysis with the MC5 antibody was also used. Monolayers treated with culture medium showed diffuse cytoplasmic fluorescence. In contrast, treatment with either TNF (1,000 U/ml for 15 min) or 1,2-dioctanoylglycerol (4 x 10(-5) M for 5 min), a diacylglycerol that activates PKC, resulted in translocation of fluorescence to the cell periphery; fine, punctate PKC-associated fluorescence was localized to the margins of cells. The TNF-induced translocation of PKC was inhibited using either IP-300 polyclonal anti-TNF antibody (indicating that the TNF effect was not due to the vehicle or contaminating endotoxin) or calphostin C (10(-6) M for 15 min), which inhibits PKC activation by interacting with the regulatory diacylglycerol-binding domain. TNF treatment had no effect on either the content of PKC, or of total protein, in the membrane + cytosol, and cycloheximide (40 microM for 5 min) did not alter the translocation of PKC induced by TNF; these results indicate that the effect of TNF on PKC translocation was related to neither de novo membrane synthesis of PKC (as opposed to translocation per se) nor nonspecific augmentation of protein synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 166 (6) ◽  
pp. 1788-1797 ◽  
Author(s):  
R Unglaub ◽  
B Maxeiner ◽  
B Thoma ◽  
K Pfizenmaier ◽  
P Scheurich

The regulatory action of activators for protein kinase C on the specific binding capacity for recombinant human tumor necrosis factor alpha (TNF-alpha) was studied on various human cell lines. Phorbol myristate acetate (PMA) and oleyl acetyl glycerol (OAG) both are able to rapidly downregulate TNF-binding capacity of normal and malignant cells derived from various tissues. As PMA treatment did not enhance internalization of TNF-alpha-receptor complexes at 37 degrees C, and since OAG was able to downregulate TNF-binding capacity under conditions where internalization and shedding of receptor protein are prevented, we conclude that protein kinase C controls ligand affinity of the TNF-receptor protein, possibly via direct phosphorylation. Protein kinase C triggered downregulation of TNF-alpha-binding capacity concomitantly resulted in reduction of TNF-alpha sensitivity, as revealed from decreased cytotoxic action of TNF-alpha on L 929 cells and from inhibition of TNF-alpha-mediated enhancement of HLA class II antigen expression in Colo 205 cells. Restoration of TNF-binding capacity upon abrogation of protein kinase C stimulation leads to full recovery of TNF responsiveness, further supporting the close linkage of TNF-receptor expression and TNF sensitivity. These data suggest that regulation of TNF-binding capacity by protein kinase C is one of the cellular control mechanisms of TNF responsiveness.


1997 ◽  
Vol 273 (5) ◽  
pp. L1007-L1012 ◽  
Author(s):  
Todd A. Wyatt ◽  
Harumasa Ito ◽  
Thomas J. Veys ◽  
John R. Spurzem

Bronchial epithelial cell migration, attachment, and proliferation are important processes in response to airway injury. We have shown that tumor necrosis factor (TNF)-α stimulates the migration of bovine bronchial epithelial cells (BBEC) in vitro. We hypothesized that protein kinase C (PKC) may be one of the intracellular signaling mediators of TNF-α in BBEC. In this study, we have identified multiple PKC isoforms in BBEC and measured total cellular PKC activity. Polyclonal antibodies to the PKC-α, -β2, -δ, and -ε isoforms recognized protein bands around 80–90 kDa. BBEC primary cultures treated with either 500 U/ml TNF-α for 2–4 h or 100 ng/ml 12- O-tetradecanoylphorbol 13-acetate for 15 min resulted in three- to fivefold increases in PKC activity in the particulate fractions of crude cell lysates. This activity was inhibited by 1 μM calphostin C or 10 μM H-7. Similarly, TNF-α-stimulated BBEC migration was reduced at least twofold in the presence of H-7 or calphostin C. These studies suggest that the activation of PKC is necessary for TNF-α-stimulated BBEC migration.


Sign in / Sign up

Export Citation Format

Share Document