scholarly journals cAMP analogues inhibit phosphatidylcholine biosynthesis in cultured rat hepatocytes.

1981 ◽  
Vol 256 (16) ◽  
pp. 8283-8286 ◽  
Author(s):  
S.L. Pelech ◽  
P.H. Pritchard ◽  
D.E. Vance
1989 ◽  
Vol 260 (1) ◽  
pp. 207-214 ◽  
Author(s):  
B S Robinson ◽  
Z Yao ◽  
D J Baisted ◽  
D E Vance

The metabolism of lysophosphatidylcholine was studied in cultured rat hepatocytes deficient in choline and methionine. Even though the cells were defective in phosphatidylcholine biosynthesis, the albumin-stimulated release of lysophosphatidylcholine (1.9 nmol/h per mg of cellular protein) was similar to that in hepatocytes supplemented with choline. Albumin also stimulated (1.4-fold) the release of phosphatidylcholine from the deficient cells. The extra phosphatidylcholine and lysophosphatidylcholine in the medium were largely recovered in the albumin fraction (density greater than 1.18 g/ml), suggesting that albumin released these lipids from hepatocytes because of binding to this protein. The secretion of glycerophosphocholine was decreased by about 40% by the addition of albumin. When choline-deficient hepatocytes were supplemented with lysophosphatidylcholine, it was transported into the cells and mainly acylated to form phosphatidylcholine, which increased in mass by 30-35% in the first 4 h of incubation. Lysophosphatidylcholine was shown to be as effective as choline in restoring the secretion of very-low-density lipoproteins to normal amounts, as judged by the secretion of triacylglycerol, phosphatidylcholine and the apolipoproteins associated with very-low-density lipoproteins. Thus phosphatidylcholine synthesis via reacylation of lysophosphatidylcholine, via the CDP-choline pathway or via methylation of phosphatidylethanolamine, will satisfy the requirements for secretion of very-low-density lipoprotein from hepatocytes.


1985 ◽  
Vol 63 (8) ◽  
pp. 870-881 ◽  
Author(s):  
Jean E. Vance ◽  
Dennis E. Vance

An investigation of the role of phospholipids in lipoprotein assembly and secretion is important since phospholipids, particularly phosphatidylcholine, are prominent components of all plasma lipoproteins. The fatty acid composition of phosphatidylcholine is virtually identical in human very low (VLDL), low, and high density lipoproteins, which supports the idea that phosphatidylcholine exchanges freely among plasma lipoproteins. However, the fatty acid composition of phosphatidylcholine from cultured rat hepatocytes is different from that in the secreted lipoproteins. In addition, the composition of molecular species of phosphatidylcholine is quite different in the rat liver, plasma, and red cells.Phosphatidylcholine is made in liver by two alternate pathways, by the CDP-choline pathway and by the methylation of phosphatidylethanolamine. Regulation of phosphatidylcholine biosynthesis by the CDP-choline pathway in rat liver is well established. In most instances, the rate of phosphatidylcholine synthesis is governed by the activity of CTP:phosphocholine cytidylyltransferase, which is present in the cytosol and also associated with microsomes. The cytosolic enzyme is inactive but can be reversibly translocated to the microsomes, where it is active. Translocation of this enzyme to the microsomes can be achieved either by a dephosphorylation reaction or by the presence of fatty acids in the cytosol.Once synthesized, how is phosphatidylcholine assembled into lipoprotein particles? The sequence of assembly of phospholipids into VLDL has been investigated in several studies. In a pulse–chase experiment, there was an initial labelling (within 15 min of the pulse) of phospholipids in secreted VLDL, which probably reflected the rapid movement of the phospholipids from their site of synthesis (the endoplasmic reticulum) to the Golgi. There appears to be a rapid exchange of phospholipid between the Golgi membranes and contents. There was also a delayed labelling (after 30 min) of the phospholipids and triacylglycerols (from [3H]glycerol) and the apoproteins (from [3H]leucine) in the secreted VLDL. This lag was attributed to the time taken for the nascent VLDL particles to move from the lumen of the endoplasmic reticulum to the Golgi and into the medium.Is phosphatidylcholine biosynthesis required for lipoprotein secretion? This question was investigated in rats maintained on a choline-deficient diet for 10 days. The total amount of plasma phosphatidylcholine decreased by approximately 40% and the rats developed fatty livers. The mechanisms for these effects of choline deficiency have not been fully explained, although one might anticipate that a deficiency of choline would inhibit the synthesis of phosphatidylcholine via the CDP-choline pathway.In addition, the possibility was considered that the alternative pathway for phosphatidylcholine biosynthesis (the methylation of phosphatidylethanolamine) might be necessary for lipoprotein secretion. Inhibition of the methylation pathway for phosphatidylcholine synthesis by greater than 90% in cultured rat hepatocytes did not inhibit the secretion of phosphatidylcholine, phosphatidylethanolamine, or apoproteins of the lipoproteins in the culture medium.Since phosphatidylcholine, triacylglycerol, and cholesterol are required for lipoprotein assembly and secretion, there might be some coordination among the synthesis and secretion of phosphatidylcholine, triacylglycerol, and cholesterol. Such coordinate regulation has been observed. For example, fatty acids stimulate the synthesis and secretion of both triacylglycerol and phosphatidylcholine by cultured rat hepatocytes. In addition, glucagon and AMP inhibit fatty acid synthesis, phosphatidylcholine biosynthesis, and the secretion of both phosphatidylcholine and triacylglycerol. Surprisingly, insulin appears to inhibit lipoprotein secretion even though it promotes fatty acid and cholesterol biosynthesis. In other studies in which there was an increased supply of cholesterol and cholesterol esters in the diet of rats, the percent of cholesterol esters in the core of the secreted VLDL particles was increased. Moreover, cholesterol feeding increased the plasma concentrations of both phosphatidylcholine and cholesterol. Presumably, there was a coordination of the synthesis of phosphatidylcholine with the level of cholesterol in the cells and (or) plasma.We conclude that phosphatidylcholine biosynthesis is a critical component for the synthesis and secretion of lipoproteins from liver.


1984 ◽  
Vol 62 (4) ◽  
pp. 196-202 ◽  
Author(s):  
Steven L. Pelech ◽  
P. Haydn Pritchard ◽  
Eric F. Sommerman ◽  
Anthony Percival-Smith ◽  
Dennis E. Vance

The short-term influence of insulin and glucagon on phosphatidylcholine biosynthesis in monolayer cultures of rat hepatocytes was investigated. Under conditions in which insulin (100 nM) stimulated [3H]acetate incorporation into fatty acid almost twofold, synthesis of phosphatidylcholine via CDP-choline and from phosphatidylethanolamine were unaffected. By contrast, glucagon (100 nM), even in the presence of insulin (100 nM), reduced the rate of phosphatidylcholine formation from [Me-3H]phosphocholine by approximately 25% (p < 0.05) within 1 h. Similarly, [3H]phosphatidylethanolamine incorporation into phosphatidylcholine was inhibited in cells exposed to glucagon. Insulin and glucagon had little or no effect on [Me-3H] choline uptake by the hepatocytes. No changes in the activities of the phosphatidylcholine biosynthetic enzymes in cytosol and microsomes from glucagon-treated cells could be detected.


Diabetes ◽  
1991 ◽  
Vol 40 (11) ◽  
pp. 1525-1530 ◽  
Author(s):  
L. S. Phillips ◽  
S. Goldstein ◽  
C. I. Pao

Sign in / Sign up

Export Citation Format

Share Document