plasma lipoproteins
Recently Published Documents


TOTAL DOCUMENTS

1634
(FIVE YEARS 69)

H-INDEX

92
(FIVE YEARS 5)

Author(s):  
D. A. Helen Sheeba ◽  
R. Gandhimathi

Introduction: Hyperlipidemia is a medical condition indicated by an increase in one or more plasma lipids, such as triglycerides, cholesterol, cholesterol esters, phospholipids, and/or plasma lipoproteins, such as very low-density lipoprotein and low-density lipoprotein, as well as decreased levels of high-density lipoprotein. This increase in plasma lipids is one of the most important risk factors for cardiovascular disease. In the meanwhile, statins and fibrates remain the most common anti-hyperlipidemic drugs for treating high plasma cholesterol and triglycerides. Conclusion: Hence this review focused to study of hyperlipidemia. This review is useful to research work in hyperlididemia.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5845
Author(s):  
Giuseppe Corona ◽  
Emanuela Di Gregorio ◽  
Alessia Vignoli ◽  
Elena Muraro ◽  
Agostino Steffan ◽  
...  

The lipid tumour demand may shape the host metabolism adapting the circulating lipids composition to its growth and progression needs. This study aims to exploit the straightforward 1H-NMR lipoproteins analysis to investigate the alterations of the circulating lipoproteins’ fractions in HER2-positive breast cancer and their modulations induced by treatments. The baseline 1H-NMR plasma lipoproteins profiles were measured in 43 HER2-positive breast cancer patients and compared with those of 28 healthy women. In a subset of 32 patients, longitudinal measurements were also performed along neoadjuvant chemotherapy, after surgery, adjuvant treatment, and during the two-year follow-up. Differences between groups were assessed by multivariate PLS-DA and by univariate analyses. The diagnostic power of lipoproteins subfractions was assessed by ROC curve, while lipoproteins time changes along interventions were investigated by ANOVA analysis. The PLS-DA model distinguished HER2-positive breast cancer patients from the control group with a sensitivity of 96.4% and specificity of 90.7%, mainly due to the differential levels of VLDLs subfractions that were significantly higher in the patients' group. Neoadjuvant chemotherapy-induced a significant drop in the HDLs after the first three months of treatment and a specific decrease in the HDL-3 and HDL-4 subfractions were found significantly associated with the pathological complete response achievement. These results indicate that HER2-positive breast cancer is characterized by a significant host lipid mobilization that could be useful for diagnostic purposes. Moreover, the lipoproteins profiles alterations induced by the therapeutic interventions could predict the clinical outcome supporting the application of 1H-NMR lipoproteins profiles analysis for longitudinal monitoring of HER2-positive breast cancer in large clinical studies.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1785
Author(s):  
Juan Diego Hernández-Camacho ◽  
Laura García-Corzo ◽  
Daniel José Moreno Fernández-Ayala ◽  
Plácido Navas ◽  
Guillermo López-Lluch

Coenzyme Q is a unique lipidic molecule highly conserved in evolution and essential to maintaining aerobic metabolism. It is endogenously synthesized in all cells by a very complex pathway involving a group of nuclear genes that share high homology among species. This pathway is tightly regulated at transcription and translation, but also by environment and energy requirements. Here, we review how coenzyme Q reacts within mitochondria to promote ATP synthesis and also integrates a plethora of metabolic pathways and regulates mitochondrial oxidative stress. Coenzyme Q is also located in all cellular membranes and plasma lipoproteins in which it exerts antioxidant function, and its reaction with different extramitochondrial oxidoreductases contributes to regulate the cellular redox homeostasis and cytosolic oxidative stress, providing a key factor in controlling various apoptosis mechanisms. Coenzyme Q levels can be decreased in humans by defects in the biosynthesis pathway or by mitochondrial or cytosolic dysfunctions, leading to a highly heterogeneous group of mitochondrial diseases included in the coenzyme Q deficiency syndrome. We also review the importance of coenzyme Q levels and its reactions involved in aging and age-associated metabolic disorders, and how the strategy of its supplementation has had benefits for combating these diseases and for physical performance in aging.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xinyuan Zhang ◽  
Kaiyue Wang ◽  
Ling Zhu ◽  
Qiyun Wang

Cholesterol esters, synthesized from cholesterol with long-chain fatty acids, are essential components of plasma lipoproteins and cell membranes that participate in various metabolic processes in the body. Cholesterol can be excreted through the cholesterol reverse transport (RCT) pathway when excessive cholesterol is produced in the extrahepatic cells, which is regulated by the liver X receptor (LXR) and its downstream regulators ATP-binding cassette subfamily A member 1 (ABCA1) and ATP-binding cassette subfamily G member 1 (ABCG1) genes. Abnormal cholesterol metabolism is closely associated with the development of diabetic retinopathy (DR). However, the precise underlying mechanism of the RCT pathway in the pathogenesis of DR is still not fully understood. This review focused on cholesterol metabolism, with a particular emphasis on the RCT pathway and its correlation with the development of DR. Particular attention has been paid to the key regulators of the RCT pathway: LXR, ABCA1, and ABCG1 genes and their potential therapeutic targets in the management of DR.


Author(s):  
Kiyun Park ◽  
Won-Seok Kim ◽  
Bohyung Choi ◽  
Ihn-Sil Kwak

Spotnape ponyfish (Nuchequula nuchalis) is a dominant species that is broadly distributed from estuarine to deep-bay areas, reflecting a euryhaline habitat. Apolipoprotein AI (ApoAI) is a main component of plasma lipoproteins and has crucial roles in lipid metabolism and the defense immune system. In this study, we characterized the N. nuchalis ApoAI gene and analyzed the expression of the ApoAI transcript in N. nuchalis collected at various sites in the estuary and the deep-bay area which have different salinities. Owing to the fish’s mobility, we conducted stable isotope analyses to confirm the habitat characteristics of N. nuchalis. Carbon and nitrogen isotope ratios (δ13C and δ15N) from N. nuchalis indicated different feeding sources and trophic levels in the estuarine and deep-bay habitats. The characterized N. nuchalis ApoAI displayed residual repeats that formed a pair of alpha helices, indicating that the protein belongs to the apolipoprotein family. In the phylogenetic analysis, there was no sister group of N. nuchalis ApoAI among the large clades of fish species. The transcriptional expression level of ApoAI was higher in N. nuchalis inhabiting the deep-bay area with a high salinity (over 31 psu) than in N. nuchalis inhabiting the top of the estuary with a low salinity (6~15 psu). In addition, the expression patterns of N. nuchalis ApoAI were positively correlated with environmental factors (transparency, pH, TC, and TIC) in the high salinity area. These results suggest that ApoAI gene expression can reflect habitat characteristics of N. nuchalis which traverse broad salinity ranges and is associated with functional roles of osmoregulation and lipid metabolism for fish growth and development.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1598
Author(s):  
Shunji Kato ◽  
Yusuke Osuka ◽  
Saoussane Khalifa ◽  
Takashi Obama ◽  
Hiroyuki Itabe ◽  
...  

The continuous formation and accumulation of oxidized lipids (e.g., lipid hydroperoxides (LOOH)) which are present even in plasma lipoproteins of healthy subjects, are ultimately considered to be linked to various diseases. Because lipid peroxidation mechanisms (i.e., radical, singlet oxygen, and enzymatic oxidation) can be suppressed by certain proper antioxidants (e.g., radical oxidation is efficiently suppressed by tocopherol), in order to suppress lipid peroxidation successfully, the determination of the peroxidation mechanism involved in the formation of LOOH is deemed crucial. In this study, to determine the peroxidation mechanisms of plasma lipoproteins of healthy subjects, we develop novel analytical methods using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine hydroperoxide (PC 16:0/18:2;OOH) and cholesteryl linoleate hydroperoxide (CE 18:2;OOH) isomers. Using the newly developed methods, these PC 16:0/18:2;OOH and CE 18:2;OOH isomers in the low-density lipoprotein (LDL) and high-density lipoprotein (HDL) of healthy subjects are analyzed. Consequently, it is found that predominant PC 16:0/18:2;OOH and CE 18:2;OOH isomers in LDL and HDL are PC 16:0/18:2;9OOH, PC 16:0/18:2;13OOH, CE 18:2;9OOH, and CE 18:2;13OOH, which means that PC and CE in LDL and HDL are mainly oxidized by radical and/or enzymatic oxidation. In conclusion, the insights about the oxidation mechanisms shown in this study would be useful for a more effective suppression of oxidative stress in the human organism.


Author(s):  
Maija Ruuth ◽  
Mari Lahelma ◽  
Panu K. Luukkonen ◽  
Martina B. Lorey ◽  
Sami Qadri ◽  
...  

Objective: We recently showed that measurement of the susceptibility of LDL (low-density lipoprotein) to aggregation is an independent predictor of cardiovascular events. We now wished to compare effects of overfeeding different dietary macronutrients on LDL aggregation, proteoglycan-binding of plasma lipoproteins, and on the concentration of oxidized LDL in plasma, 3 in vitro parameters consistent with increased atherogenicity. Approach and Results: The participants (36 subjects; age, 48±10 years; body mass index, 30.9±6.2 kg/m 2 ) were randomized to consume an extra 1000 kcal/day of either unsaturated fat, saturated fat, or simple sugars (CARB) for 3 weeks. We measured plasma proatherogenic properties (susceptibility of LDL to aggregation, proteoglycan-binding, oxidized LDL) and concentrations and composition of plasma lipoproteins using nuclear magnetic resonance spectroscopy, and in LDL using liquid chromatography mass spectrometry, before and after the overfeeding diets. LDL aggregation increased in the saturated fat but not the other groups. This change was associated with increased sphingolipid and saturated triacylglycerols in LDL and in plasma and reduction of clusterin on LDL particles. Proteoglycan binding of plasma lipoproteins decreased in the unsaturated fat group relative to the baseline diet. Lipoprotein properties remained unchanged in the CARB group. Conclusions: The type of fat during 3 weeks of overfeeding is an important determinant of the characteristics and functional properties of plasma lipoproteins in humans. REGISTRATION: URL: http://www.clinicaltrials.gov ; Unique identifier NCT02133144.


2021 ◽  
Vol 8 (4-5) ◽  
pp. 603-611
Author(s):  
L. Beltaifa ◽  
R. Bouguerra ◽  
C. Ben Slama ◽  
H. Jabrane ◽  
A. El Khadhi ◽  
...  

We evaluated the effects of fasting during Ramadan on nutritional intake and plasma lipoproteins in 20 healthy adults of normal weight. A 5-day food questionnaire was completed for every participant. Clinical investigations, anthropometrical measurements and laboratory analysis were also undertaken. Body weight, blood pressure and blood glucose were not influenced by fasting but there were non-significant modifications in the plasma lipid fractions. The total cholesterol remained unchanged. Total daily energy intake was comparable before, during and after Ramadan despite the decrease in meal frequency during fasting. Thus fasting in Ramadan did not affect dietary intake, clinical, anthropometrical and most biological parameters


Sign in / Sign up

Export Citation Format

Share Document