scholarly journals Interaction between tetraethylammonium and amino acid residues in the pore of cloned voltage-dependent potassium channels.

1991 ◽  
Vol 266 (12) ◽  
pp. 7583-7587
Author(s):  
M P Kavanaugh ◽  
M D Varnum ◽  
P B Osborne ◽  
M J Christie ◽  
A E Busch ◽  
...  
2014 ◽  
Vol 144 (5) ◽  
pp. 457-467 ◽  
Author(s):  
Sandipan Chowdhury ◽  
Benjamin M. Haehnel ◽  
Baron Chanda

Voltage-dependent potassium channels play a crucial role in electrical excitability and cellular signaling by regulating potassium ion flux across membranes. Movement of charged residues in the voltage-sensing domain leads to a series of conformational changes that culminate in channel opening in response to changes in membrane potential. However, the molecular machinery that relays these conformational changes from voltage sensor to the pore is not well understood. Here we use generalized interaction-energy analysis (GIA) to estimate the strength of site-specific interactions between amino acid residues putatively involved in the electromechanical coupling of the voltage sensor and pore in the outwardly rectifying KV channel. We identified candidate interactors at the interface between the S4–S5 linker and the pore domain using a structure-guided graph theoretical approach that revealed clusters of conserved and closely packed residues. One such cluster, located at the intracellular intersubunit interface, comprises three residues (arginine 394, glutamate 395, and tyrosine 485) that interact with each other. The calculated interaction energies were 3–5 kcal, which is especially notable given that the net free-energy change during activation of the Shaker KV channel is ∼14 kcal. We find that this triad is delicately maintained by balance of interactions that are responsible for structural integrity of the intersubunit interface while maintaining sufficient flexibility at a critical gating hinge for optimal transmission of force to the pore gate.


2020 ◽  
Author(s):  
Eedann McCord ◽  
Goragot Wisedchaisri ◽  
William A. Catterall

ABSTRACTVoltage-gated sodium channels initiate action potentials in prokaryotes and in many eukaryotic cells, including vertebrate nerve and muscle. Their activation is steeply voltage-dependent, but it is unclear how the voltage sensitivity is set or whether it can be broadly shifted to positive voltages. Here we show that the voltage dependence of activation (VA) of the ancestral bacterial sodium channel NaVAb can be progressively shifted from −118 mV to +35 mV in chimeras with increasing numbers of amino acid residues from the extracellular half of the voltage sensor of human NaV1.7 channels. In a minimal chimera in which only 32 residues were transferred, we analyzed the effects of six additional mutations of conserved amino acid residues singly, in pairs, and as triple mutations. The resulting chimeric mutants exhibited a broad range of voltage sensitivity from VA=−118 mV to VA=+120 mV. Three mutations (N48K, L112A, and M119V) shifted VA to +61 mV when substituted in NaVAb itself, and substitution of two additional Cys residues in the Cys-free background of NaVAb further shifted VA to +105 mV. In these mutants, measurement of gating currents revealed that the voltage dependence of gating charge movement (VQ) shifted to positive membrane potentials as much or more than VA, confirming that the gating charges are trapped in their resting positions by these VA-shifting mutations. Our results demonstrate broadband shifting of VA and VQ of a sodium channel across a range of 240 mV and provide a toolbox of methods and constructs to analyze sodium channel structure and function in the resting state at 0 mV and in activated states at positive membrane potentials.GRAPHICAL ABSTRACTThe complete range of broadband tuning of voltage-dependent activation of a sodium channel.


2002 ◽  
Vol 277 (38) ◽  
pp. 35393-35401 ◽  
Author(s):  
Vladimir Yarov-Yarovoy ◽  
Jancy C. McPhee ◽  
Diane Idsvoog ◽  
Caroline Pate ◽  
Todd Scheuer ◽  
...  

2012 ◽  
Author(s):  
Michael Wisniewski ◽  
Samir Droby ◽  
John Norelli ◽  
Dov Prusky ◽  
Vera Hershkovitz

Use of Lqh2 mutants (produced at TAU) and rNav1.2a mutants (produced at the US side) for identifying receptor site-3: Based on the fact that binding of scorpion alpha-toxins is voltage-dependent, which suggests toxin binding at the mobile voltage-sensing region, we analyzed which of the toxin bioactive domains (Core-domain or NC-domain) interacts with the DIV Gating-module of rNav1.2a. This analysis was based on the assumption that the dissociation of toxin mutants upon depolarization would vary from that of the unmodified toxin should the substitutions affect a site of interaction with the channel Gating-module. Using a series of toxin mutants (mutations at both domains) and two channel mutants that were shown to reduce the sensitivity to scorpion alpha-toxins, and by comparison of depolarization-driven dissociation of Lqh2 derivatives off their binding site at rNav1.2a mutant channels we found that the toxin Core-domain interacts with the Gating-module of DIV. Details of the experiments and results appear in Guret al (2011). Mapping receptor site 3 at Nav1.2a by extensive channel mutagenesis (Seattle): Since previous studies with photoaffinity labeling and antibody mapping implicated domains I and IV in scorpion alpha-toxin binding, Nav1.2 channel mutants containing substitutions at these extracellular regions were expressed and tested for receptor function by whole-cell voltage clamp. Of a large number of channel mutants, T1560A, F1610A, and E1613A in domain IV had ~5.9-, ~10.7-, and ~3.9-fold lower affinities for the scorpion toxin Lqh2, respectively, and mutant E1613R had 73-fold lower affinity. Toxin dissociation was accelerated by depolarization for both wild-type and mutants, and the rates of dissociation were also increased by mutations T1560A, F1610A and E1613A. In contrast, association rates for these three mutant channels at negative membrane potentials were not significantly changed and were not voltage-dependent. These results indicated that Thr1560 in the S1-S2 loop, Phe1610 in the S3 segment, and Glu1613 in the S3-S4 loop in domain IV participate in toxin binding. T393A in the SS2-S6 loop in domain I also showed a ~3.4-fold lower affinity for Lqh2, indicating that this extracellular loop may form a secondary component of the toxin binding site. Analysis with the Rosetta-Membrane algorithm revealed a three-dimensional model of Lqh2 binding to the voltage sensor in a resting state. In this model, amino acid residues in an extracellular cleft formed by the S1-S2 and S3-S4 loops in domain IV that are important for toxin binding interact with amino acid residues on two faces of the wedge-shaped Lqh2 molecule that are important for toxin action. The conserved gating charges in the S4 transmembrane segment are in an inward position and likely form ion pairs with negatively charged amino acid residues in the S2 and S3 segments (Wang et al 2011; Gurevitz 2012; Gurevitzet al 2013).


2005 ◽  
Vol 102 (14) ◽  
pp. 5020-5025 ◽  
Author(s):  
C. Gonzalez ◽  
F. J. Morera ◽  
E. Rosenmann ◽  
O. Alvarez ◽  
R. Latorre

2011 ◽  
Vol 138 (5) ◽  
pp. 521-535 ◽  
Author(s):  
Koichi Nakajo ◽  
Atsuo Nishino ◽  
Yasushi Okamura ◽  
Yoshihiro Kubo

KCNQ1 channels are voltage-gated potassium channels that are widely expressed in various non-neuronal tissues, such as the heart, pancreas, and intestine. KCNE proteins are known as the auxiliary subunits for KCNQ1 channels. The effects and functions of the different KCNE proteins on KCNQ1 modulation are various; the KCNQ1–KCNE1 ion channel complex produces a slowly activating potassium channel that is crucial for heartbeat regulation, while the KCNE3 protein makes KCNQ1 channels constitutively active, which is important for K+ and Cl− transport in the intestine. The mechanisms by which KCNE proteins modulate KCNQ1 channels have long been studied and discussed; however, it is not well understood how different KCNE proteins exert considerably different effects on KCNQ1 channels. Here, we approached this point by taking advantage of the recently isolated Ci-KCNQ1, a KCNQ1 homologue from marine invertebrate Ciona intestinalis. We found that Ci-KCNQ1 alone could be expressed in Xenopus laevis oocytes and produced a voltage-dependent potassium current, but that Ci-KCNQ1 was not properly modulated by KCNE1 and totally unaffected by coexpression of KCNE3. By making chimeras of Ci-KCNQ1 and human KCNQ1, we determined several amino acid residues located in the pore region of human KCNQ1 involved in KCNE1 modulation. Interestingly, though, these amino acid residues of the pore region are not important for KCNE3 modulation, and we subsequently found that the S1 segment plays an important role in making KCNQ1 channels constitutively active by KCNE3. Our findings indicate that different KCNE proteins use different domains of KCNQ1 channels, and that may explain why different KCNE proteins give quite different outcomes by forming a complex with KCNQ1 channels.


1987 ◽  
Vol 57 (01) ◽  
pp. 017-019 ◽  
Author(s):  
Magda M W Ulrich ◽  
Berry A M Soute ◽  
L Johan M van Haarlem ◽  
Cees Vermeer

SummaryDecarboxylated osteocalcins were prepared and purified from bovine, chicken, human and monkey bones and assayed for their ability to serve as a substrate for vitamin K-dependent carboxylase from bovine liver. Substantial differences were observed, especially between bovine and monkey d-osteocalcin. Since these substrates differ only in their amino acid residues 3 and 4, it seems that these residues play a role in the recognition of a substrate by hepatic carboxylase.


Sign in / Sign up

Export Citation Format

Share Document