Solubility and dissolution kinetics of calcium oxalate renal calculi in solutions, containing dl-lysine: in vitro experiments

2000 ◽  
Vol 212 (1-2) ◽  
pp. 233-238 ◽  
Author(s):  
S Atanassova ◽  
K Neykov ◽  
I Gutzow
2019 ◽  
Vol 14 (6) ◽  
pp. 951-957
Author(s):  
G. V. Ramenskaya ◽  
I. E. Shokhin ◽  
N. I. Gaponova ◽  
V. R. Abdrakhmanov

Aim. Investigation of comparative dissolution kinetics of generic medicinal products containing moxonidine versus reference drug. Material and methods. Objects of the research were film-coated tablets containing moxonidine (INN) in a dose 0.4 mg: a reference drug Physiotens® and 4 generic drugs. In vitro dissolution test of moxonidine from the study drugs was performed using comparative dissolution kinetics test (CDKT). The CDKT was performed in the media with the following pH: 1.2 (1:9 mixture of 0.1 M hydrochloric acid and water), 4.5 (acetate buffer solution, prepared as per State Pharmacopoeia, XIII), and 6.8 (phosphate buffer solution, prepared as per State Pharmacopoeia, XIII). The sampling for dissolved moxonidine was performed 5, 10, 15, 20, and 30 min after the test was started. An high performance liquid chromatography method with ultraviolet detection at 220 nm was used to assay. Results. Within 15 min more that 85% of moxonidine dissolved from the reference drug and all study drugs at pH 1.2; dissolution profiles were similar without calculation of similarity factor f2. Similarly, at pH 4.5 dissolution profiles of study drugs #2 and #3 were similar to that of the reference drug, and the similarity factor f2 was not calculated. However, in case of study drugs #1 and #4 significant differences were observed at a single time point (15 min), which suggests that their dissolution profiles are non-similar to that of the reference drug. Similarity factors f2 were calculated 17.52 and 35.30, respectively (less than 50). At pH 6.8 similarity factors f2 for all study generic drugs were also less than 50 (23.8, 49.8, 38.6, and 35.9), so their dissolution curves were non-similar to that of reference drug. Conclusion. In our study we observed difference in release in vitro of medicinal products containing moxonidines: none of the study drugs was fully similar to the reference drug in all media. The differences observed at pH 6.8 were noteworthy, where the samples had or faster kinetics (study drugs #2 and #3), or slower dissolution kinetics (test drugs #1 and #4). Observed differences in moxonidine release rate may impact absorption of active pharmaceutical ingredient into the blood following drug administration.


2008 ◽  
Vol 396-398 ◽  
pp. 107-110 ◽  
Author(s):  
Hassane Oudadesse ◽  
M. Mami ◽  
R. Dorbez-Sridi ◽  
P. Pellen-Mussi ◽  
F. Perez ◽  
...  

This work is focused on the bioactive glasses obtained by melting and rapid quenching. Two glasses with mineral composition of: 47% SiO2 - 26% CaO - 21% Na2O - 6% P2O5 and 48% SiO2 - 30% CaO - 18% Na2O - 4% P2O5 were investigated. The aim of this study was to establish the kinetics of HCAp layer formation “in vitro” and to control the adhesion and proliferation cells of the two glasses in contact with osseous cells. Obtained results permit to evaluate their chemical reactivity and their bioactivity after immersion in the SBF-K9. Ionic exchanges between biomaterials and SBF liquid during the “in vitro” experiments highlight the differences of the chemical reactivity and bioactivity of 47S6 and 48S4. The structural basis for the effect of cristallinity on the rates of HCA formation in vitro in favour of glasses was also established. The melt derived 47S6 and 48S4 glasses offer to surgeons new compositions with different bioactivity kinetic that bioglassÒ 45S6 and can be adaptable in some other bony pathology.


2012 ◽  
Vol 584 ◽  
pp. 494-498
Author(s):  
Abdul Rasheed Mohamed Ali ◽  
Narayanasamy Arunai Nambi Raj

Calcium oxalate monohydrate (COM) is the primary constituent of the majority of stones formed in the urinary tract. Mechanical properties of renal calculi dictate how a stone interact and disintegrate with mechanical forces produced by shock wave and laser lithotripsy techniques. Tensile stresses may be more effective in some instances in disrupting material because most materials are weaker in tension than compression. Urinary stone containing COM as a major component was subjected to tensile, flexural and compressive strength studies in order to understand its mechanical properties in vitro. The calculated tensile breaking strength for the urinary stone from three tests varies from 0.57 MNm-2 to 1.52 MNm-2. The flexural strength and the flexural modulus of the urinary stone were calculated as 5.17 MNm-2 and 2.22 GNm-2 respectively while the observed compressive strength was 6.11 MNm-2. The chemical composition and the crystalline nature of the stone were verified using Fourier Transform Infrared spectroscopy and X-ray diffraction.


2010 ◽  
Vol 17 (3) ◽  
pp. 20-22 ◽  
Author(s):  
I. E. Shohin ◽  
G. V. Ramenskaya ◽  
G. F. Vasilenko ◽  
E. A. Malashenko

1993 ◽  
Vol 4 (2) ◽  
pp. 117-126 ◽  
Author(s):  
K. E. Healy ◽  
P. Ducheyne

Sign in / Sign up

Export Citation Format

Share Document