Extension of an analytical solution for polarographic current influenced by first-order coupled chemical reaction

1983 ◽  
Vol 146 (2) ◽  
pp. 253-261 ◽  
Author(s):  
M. Lovrić ◽  
I. Ruić
1979 ◽  
Vol 44 (5) ◽  
pp. 1388-1396
Author(s):  
Václav Kolář ◽  
Zdeněk Brož

Relations describing the mass transfer accompanied by an irreversible first order chemical reaction are derived, based on the formerly published general theoretical concepts of interfacial mass transfer. These relations are compared with experimental results taken from literature.


1981 ◽  
Vol 46 (2) ◽  
pp. 452-456
Author(s):  
Milan Šolc

The successive time derivatives of relative entropy and entropy production for a system with a reversible first-order reaction alternate in sign. It is proved that the relative entropy for reactions with an equilibrium constant smaller than or equal to one is completely monotonic in the whole definition interval, and for reactions with an equilibrium constant larger than one this function is completely monotonic at the beginning of the reaction and near to equilibrium.


2021 ◽  
Vol 76 (3) ◽  
pp. 265-283
Author(s):  
G. Nath

Abstract The approximate analytical solution for the propagation of gas ionizing cylindrical blast (shock) wave in a rotational axisymmetric non-ideal gas with azimuthal or axial magnetic field is investigated. The axial and azimuthal components of fluid velocity are taken into consideration and these flow variables, magnetic field in the ambient medium are assumed to be varying according to the power laws with distance from the axis of symmetry. The shock is supposed to be strong one for the ratio C 0 V s 2 ${\left(\frac{{C}_{0}}{{V}_{s}}\right)}^{2}$ to be a negligible small quantity, where C 0 is the sound velocity in undisturbed fluid and V S is the shock velocity. In the undisturbed medium the density is assumed to be constant to obtain the similarity solution. The flow variables in power series of C 0 V s 2 ${\left(\frac{{C}_{0}}{{V}_{s}}\right)}^{2}$ are expanded to obtain the approximate analytical solutions. The first order and second order approximations to the solutions are discussed with the help of power series expansion. For the first order approximation the analytical solutions are derived. In the flow-field region behind the blast wave the distribution of the flow variables in the case of first order approximation is shown in graphs. It is observed that in the flow field region the quantity J 0 increases with an increase in the value of gas non-idealness parameter or Alfven-Mach number or rotational parameter. Hence, the non-idealness of the gas and the presence of rotation or magnetic field have decaying effect on shock wave.


Author(s):  
Subhi Abdalazim Aljily Osman ◽  

Maxwell’s equations describe electromagnetic Phenomena. This includes micro- , radio and radar waves .The Maxwell equations are discussed in more detail Faraday's and Amperes laws constitute a first - order hyperbolic system of equations .Matlab is one of the most famous mathematical programs in calculating mathematical problems .The aims of this study is to calculate Maxwell’s equations using Matlab .We followed the applied mathematical method by using Matlab .We found that the solution of Matlab is more accuracy and speed than the analytical solution.


2012 ◽  
Vol 204-208 ◽  
pp. 2824-2831
Author(s):  
You Fa Yang ◽  
Shuai Li ◽  
Ling Ling

First order iterative algorithm, mixed iterative algorithm, structural damage identification using static and dynamic data were put forward. The first and second order sensitivity matrixes of modal parameters that respect to the damage member were derived, and the modal truncation error which produced during the derivation of modal mode sensitivity was improved. The first and second order sensitivity equations were established respectively based on the principle of Taylor series expansion. And the solving method of these sensitivity equations was studied. Mixed iterative algorithm took up the second order nonlinear analytical solution as the first substituting value, and then the first substituting value was modified based on the Taylor series bias error using the solution of the first order sensitivity equation. It showed that the mixed iterative algorithm in this paper had a better convergence and a faster iteration speed because the higher precision second order nonlinear analytical solution was adopted. Because the method using static and dynamic data combined the static information and dynamic information of the structure, it could react the inside information of the structure more comprehensively, the result of damage identification was more accurate and it would be adapted more widely.


Sign in / Sign up

Export Citation Format

Share Document