Reactivity of a binuclear Ru(II) N2-bridged complex towards phosphines: facile access to novel mono and binuclear phosphorous derivatives. X-ray structural characterization of two unusual binuclear complexes containing ‘pincer’ ligands: [{RuCl2(η3-NN′N)}2(μ-η2-P2)] (NN′N=2,6-bis[(dimethylamino)methyl]pyridine; P2=1,3-bis[(diphenylphosphino)methyl]benzene or 1,3-bis(diphenylphosphino)propane)

1999 ◽  
Vol 583 (1-2) ◽  
pp. 69-79 ◽  
Author(s):  
Ignacio del Rı́o ◽  
Robert A. Gossage ◽  
Martin Lutz ◽  
Anthony L. Spek ◽  
Gerard van Koten
1997 ◽  
Vol 50 (6) ◽  
pp. 641 ◽  
Author(s):  
Graham A. Bowmaker ◽  
Effendy ◽  
Eban N. de Silva ◽  
Allan H. White

Syntheses and room-temperature single-crystal X-ray structural characterization of binuclear 1 : 2 adducts formed between silver(I) halides, AgX (X = Cl, Br, I), and triphenylstibine, SbPh3, are described. The three complexes are isomorphous, being triclinic, P-1, a ≈ 18·5, b ≈ 14·6, c ≈ 14·5 Å, α ≈ 62·5, β ≈ 74, γ ≈ 77°, Z = 2 centrosymmetric dimers. Conventional R on F were 0·043, 0·038 and 0·046 for 4984, 8479 and 4166 independent, ‘observed’ (I > 3σ(I)) reflections respectively. In [(Ph3b)2Ag(µ-X)2Ag(SbPh3)2], Ag–Sb range between 2·702(1) and 2·744(2) Å, lengthening slightly from chloride to iodide; Ag–X are 2·567(5)–2·628(4) (Cl), 2·684(1)–2·737(1) (Br) and 2·826(3)–2·869(3) Å (I). The far-infrared spectra of [(Ph3Sb)2Ag(µ-X)2Ag(SbPh3)2] show v(AgX) bands at 178, 158 (X = Cl), 121 (X = Br) and 110 cm-1 (X = I). The splittings and band widths reflect a decrease in the degree of distortion of the Ag(µ-X)2Ag units from a symmetrically bridged structure from X = Cl to I.


2007 ◽  
Vol 2007 (suppl_26) ◽  
pp. 61-66 ◽  
Author(s):  
B. Peplinski ◽  
B. Adamczyk ◽  
G. Kley ◽  
K. Adam ◽  
F. Emmerling ◽  
...  

Author(s):  
Shabana Noor ◽  
Richard Goddard ◽  
Fehmeeda Khatoon ◽  
Sarvendra Kumar ◽  
Rüdiger W. Seidel

AbstractSynthesis and structural characterization of two heterodinuclear ZnII-LnIII complexes with the formula [ZnLn(HL)(µ-OAc)(NO3)2(H2O)x(MeOH)1-x]NO3 · n H2O · n MeOH [Ln = Pr (1), Nd (2)] and the crystal and molecular structure of [ZnNd(HL)(µ-OAc)(NO3)2(H2O)] [ZnNd(HL)(OAc)(NO3)2(H2O)](NO3)2 · n H2O · n MeOH (3) are reported. The asymmetrical compartmental ligand (E)-2-(1-(2-((2-hydroxy-3-methoxybenzylidene)amino)-ethyl)imidazolidin-2-yl)-6-methoxyphenol (H2L) is formed from N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2valdien) through intramolecular aminal formation, resulting in a peripheral imidazoline ring. The structures of 1–3 were revealed by X-ray crystallography. The smaller ZnII ion occupies the inner N2O2 compartment of the ligand, whereas the larger and more oxophilic LnIII ions are found in the outer O2O2’ site. Graphic Abstract Synthesis and structural characterization of two heterodinuclear ZnII-LnIII complexes (Ln = Pr, Nd) bearing an asymmetrical compartmental ligand formed in situ from N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2valdien) through intramolecular aminal formation are reported.


Sign in / Sign up

Export Citation Format

Share Document