Numerical simulation of the light field in the atmosphere–ocean system using the matrix-operator method

Author(s):  
Frank Fell ◽  
Jürgen Fischer
2019 ◽  
Vol 2 (46) ◽  
pp. 25-32
Author(s):  
D. Vasilchuk ◽  
◽  
D. Semenets ◽  
V. Romanusha ◽  
B. Kobylianskyi ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 445
Author(s):  
Alexey A. Kovalev ◽  
Victor V. Kotlyar ◽  
Anton G. Nalimov

It is well known that the orbital angular momentum (OAM) of a light field is conserved on propagation. In this work, in contrast to the OAM, we analytically study conservation of the topological charge (TC), which is often confused with OAM, but has quite different physical meaning. To this end, we propose a huge-ring approximation of the Huygens–Fresnel principle, when the observation point is located on an infinite-radius ring. Based on this approximation, our proof of TC conservation reveals that there exist other quantities that are also propagation-invariant, and the number of these invariants is theoretically infinite. Numerical simulation confirms the conservation of two such invariants for two light fields. The results of this work can find applications in optical data transmission to identify optical signals.


Author(s):  
Chang Ye ◽  
Gary J. Cheng

In this paper, numerical simulation of nanoparticle integrated laser shock peening of aluminum alloys was carried out. A “tied constraint” was used to connect the matrix and nanoparticle assembly in ABAQUS package. Different particle size and particle volumes fraction (PVF) were studied. It was found that there is significant stress concentration around the nanoparticles. The existence of nanoparticle will influence the stress wave propagation and thus the final stress and strain state of the material after LSP. In addition, particle size, PVF and particle orientation all influence the strain rate, static residual stress, static plastic strain and energy absorption during the LSP process.


1948 ◽  
Vol 8 (2) ◽  
pp. 76-86 ◽  
Author(s):  
H. W. Turnbull

The result obtained by Lars Gårding, who uses the Cayley operator upon a symmetric matrix, is of considerable interest. The operator Ω = |∂/∂xij|, which is obtained on replacing the n2 elements of a determinant |xij by their corresponding differential operators and forming the corresponding n-rowed determinant, is fundamental in the classical invariant theory. After the initial discovery in 1845 by Cayley further progress was made forty years later by Capelli who considered the minors and linear combinations (polarized forms) of minors of the same order belonging to the whole determinant Ω: but in all this investigation the n2 elements xij were regarded as independent variables. The apparently special case, undertaken by Gårding when xij = xji and the matrix [xij] is symmetric, is essentially a new departure: and it is significant to have learnt from Professor A. C. Aitken in March this year 1946, that he too was finding the symmetrical matrix operator [∂/∂xij] of importance and has already written on the matter.


Sign in / Sign up

Export Citation Format

Share Document